|
import random |
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.utils import weight_norm |
|
import torch.nn.functional as F |
|
|
|
from .build_vocab import Vocab |
|
|
|
class Chomp1d(nn.Module): |
|
def __init__(self, chomp_size): |
|
super(Chomp1d, self).__init__() |
|
self.chomp_size = chomp_size |
|
|
|
def forward(self, x): |
|
return x[:, :, :-self.chomp_size].contiguous() |
|
|
|
|
|
class TemporalBlock(nn.Module): |
|
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2): |
|
super(TemporalBlock, self).__init__() |
|
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, |
|
stride=stride, padding=padding, dilation=dilation)) |
|
self.chomp1 = Chomp1d(padding) |
|
self.relu1 = nn.ReLU() |
|
self.dropout1 = nn.Dropout(dropout) |
|
|
|
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, |
|
stride=stride, padding=padding, dilation=dilation)) |
|
self.chomp2 = Chomp1d(padding) |
|
self.relu2 = nn.ReLU() |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1, |
|
self.conv2, self.chomp2, self.relu2, self.dropout2) |
|
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None |
|
self.relu = nn.ReLU() |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
self.conv1.weight.data.normal_(0, 0.01) |
|
self.conv2.weight.data.normal_(0, 0.01) |
|
if self.downsample is not None: |
|
self.downsample.weight.data.normal_(0, 0.01) |
|
|
|
def forward(self, x): |
|
out = self.net(x) |
|
res = x if self.downsample is None else self.downsample(x) |
|
return self.relu(out + res) |
|
|
|
|
|
class TemporalConvNet(nn.Module): |
|
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2): |
|
super(TemporalConvNet, self).__init__() |
|
layers = [] |
|
num_levels = len(num_channels) |
|
for i in range(num_levels): |
|
dilation_size = 2 ** i |
|
in_channels = num_inputs if i == 0 else num_channels[i-1] |
|
out_channels = num_channels[i] |
|
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, |
|
padding=(kernel_size-1) * dilation_size, dropout=dropout)] |
|
|
|
self.network = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.network(x) |
|
|
|
|
|
class TextEncoderTCN(nn.Module): |
|
""" based on https://github.com/locuslab/TCN/blob/master/TCN/word_cnn/model.py """ |
|
def __init__(self, args, n_words=11195, embed_size=300, pre_trained_embedding=None, |
|
kernel_size=2, dropout=0.3, emb_dropout=0.1, word_cache=False): |
|
super(TextEncoderTCN, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_channels = [args.hidden_size] |
|
self.tcn = TemporalConvNet(embed_size, num_channels, kernel_size, dropout=dropout) |
|
self.decoder = nn.Linear(num_channels[-1], args.word_f) |
|
self.drop = nn.Dropout(emb_dropout) |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
self.decoder.bias.data.fill_(0) |
|
self.decoder.weight.data.normal_(0, 0.01) |
|
|
|
def forward(self, input): |
|
|
|
|
|
|
|
|
|
|
|
y = self.tcn(input.transpose(1, 2)).transpose(1, 2) |
|
y = self.decoder(y) |
|
return y, torch.max(y, dim=1)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reparameterize(mu, logvar): |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like(std) |
|
return mu + eps * std |
|
|
|
def ConvNormRelu(in_channels, out_channels, downsample=False, padding=0, batchnorm=True): |
|
if not downsample: |
|
k = 3 |
|
s = 1 |
|
else: |
|
k = 4 |
|
s = 2 |
|
conv_block = nn.Conv1d(in_channels, out_channels, kernel_size=k, stride=s, padding=padding) |
|
norm_block = nn.BatchNorm1d(out_channels) |
|
if batchnorm: |
|
net = nn.Sequential( |
|
conv_block, |
|
norm_block, |
|
nn.LeakyReLU(0.2, True) |
|
) |
|
else: |
|
net = nn.Sequential( |
|
conv_block, |
|
nn.LeakyReLU(0.2, True) |
|
) |
|
return net |
|
|
|
class BasicBlock(nn.Module): |
|
""" based on timm: https://github.com/rwightman/pytorch-image-models """ |
|
def __init__(self, inplanes, planes, ker_size, stride=1, downsample=None, cardinality=1, base_width=64, |
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.LeakyReLU, norm_layer=nn.BatchNorm1d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): |
|
super(BasicBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv1d( |
|
inplanes, planes, kernel_size=ker_size, stride=stride, padding=first_dilation, |
|
dilation=dilation, bias=True) |
|
self.bn1 = norm_layer(planes) |
|
self.act1 = act_layer(inplace=True) |
|
self.conv2 = nn.Conv1d( |
|
planes, planes, kernel_size=ker_size, padding=ker_size//2, dilation=dilation, bias=True) |
|
self.bn2 = norm_layer(planes) |
|
self.act2 = act_layer(inplace=True) |
|
if downsample is not None: |
|
self.downsample = nn.Sequential( |
|
nn.Conv1d(inplanes, planes, stride=stride, kernel_size=ker_size, padding=first_dilation, dilation=dilation, bias=True), |
|
norm_layer(planes), |
|
) |
|
else: self.downsample=None |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.drop_block = drop_block |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last_bn(self): |
|
nn.init.zeros_(self.bn2.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act2(x) |
|
return x |
|
|
|
def init_weight(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): |
|
nn.init.xavier_normal_(m.weight) |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def init_weight_skcnn(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): |
|
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5)) |
|
|
|
if m.bias is not None: |
|
|
|
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight) |
|
bound = 1 / math.sqrt(fan_in) |
|
nn.init.uniform_(m.bias, -bound, bound) |
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, channel): |
|
super(ResBlock, self).__init__() |
|
self.model = nn.Sequential( |
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), |
|
) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.model(x) |
|
out += residual |
|
return out |
|
|