|
""" Optimizer Factory w/ Custom Weight Decay |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
from .timm.adafactor import Adafactor |
|
from .timm.adahessian import Adahessian |
|
from .timm.adamp import AdamP |
|
from .timm.lookahead import Lookahead |
|
from .timm.nadam import Nadam |
|
from .timm.novograd import NovoGrad |
|
from .timm.nvnovograd import NvNovoGrad |
|
from .timm.radam import RAdam |
|
from .timm.rmsprop_tf import RMSpropTF |
|
from .timm.sgdp import SGDP |
|
from .timm.adabelief import AdaBelief |
|
|
|
try: |
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD |
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
|
|
|
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()): |
|
decay = [] |
|
no_decay = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: |
|
no_decay.append(param) |
|
else: |
|
decay.append(param) |
|
return [ |
|
{"params": no_decay, "weight_decay": 0.}, |
|
{"params": decay, "weight_decay": weight_decay}] |
|
|
|
|
|
def optimizer_kwargs(args, lr_weight): |
|
""" args/argparse to kwargs helper |
|
Convert optimizer args in argparse args or args like object to keyword args for updated create fn. |
|
""" |
|
kwargs = dict( |
|
optimizer_name=args.opt, |
|
learning_rate=args.lr_base*args.batch_size/128*lr_weight, |
|
weight_decay=args.weight_decay, |
|
momentum=args.momentum) |
|
if getattr(args, "opt_eps", None) is not None: |
|
kwargs["eps"] = args.opt_eps |
|
if getattr(args, "opt_betas", None) is not None: |
|
kwargs["betas"] = args.opt_betas |
|
if getattr(args, "opt_args", None) is not None: |
|
kwargs.update(args.opt_args) |
|
return kwargs |
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True, lr_weight=1): |
|
""" Legacy optimizer factory for backwards compatibility. |
|
NOTE: Use create_optimizer_v2 for new code. |
|
""" |
|
return create_optimizer_v2( |
|
model, |
|
**optimizer_kwargs(args, lr_weight), |
|
filter_bias_and_bn=filter_bias_and_bn, |
|
) |
|
|
|
|
|
def create_optimizer_v2( |
|
model: nn.Module, |
|
optimizer_name: str = "sgd", |
|
learning_rate: Optional[float] = None, |
|
weight_decay: float = 0., |
|
momentum: float = 0.9, |
|
filter_bias_and_bn: bool = True, |
|
**kwargs): |
|
""" Create an optimizer. |
|
|
|
TODO currently the model is passed in and all parameters are selected for optimization. |
|
For more general use an interface that allows selection of parameters to optimize and lr groups, one of: |
|
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion |
|
* expose the parameters interface and leave it up to caller |
|
|
|
Args: |
|
model (nn.Module): model containing parameters to optimize |
|
optimizer_name: name of optimizer to create |
|
learning_rate: initial learning rate |
|
weight_decay: weight decay to apply in optimizer |
|
momentum: momentum for momentum based optimizers (others may use betas via kwargs) |
|
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay |
|
**kwargs: extra optimizer specific kwargs to pass through |
|
|
|
Returns: |
|
Optimizer |
|
""" |
|
opt_lower = optimizer_name.lower() |
|
if weight_decay and filter_bias_and_bn: |
|
skip = {} |
|
if hasattr(model, "no_weight_decay"): |
|
skip = model.no_weight_decay() |
|
parameters = add_weight_decay(model, weight_decay, skip) |
|
weight_decay = 0. |
|
else: |
|
parameters = model.parameters() |
|
if "fused" in opt_lower: |
|
assert has_apex and torch.cuda.is_available(), "APEX and CUDA required for fused optimizers" |
|
|
|
opt_args = dict(lr=learning_rate, weight_decay=weight_decay, **kwargs) |
|
opt_split = opt_lower.split("_") |
|
opt_lower = opt_split[-1] |
|
if opt_lower == "sgd" or opt_lower == "nesterov": |
|
opt_args.pop("eps", None) |
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == "momentum": |
|
opt_args.pop("eps", None) |
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args) |
|
|
|
elif opt_lower == "adam": |
|
optimizer = optim.Adam(parameters, **opt_args) |
|
elif opt_lower == "adabelief": |
|
optimizer = AdaBelief(parameters, rectify=False, **opt_args) |
|
elif opt_lower == "adamw": |
|
optimizer = optim.AdamW(parameters, lr=learning_rate, weight_decay=weight_decay) |
|
|
|
elif opt_lower == "nadam": |
|
optimizer = Nadam(parameters, **opt_args) |
|
elif opt_lower == "radam": |
|
optimizer = RAdam(parameters, **opt_args) |
|
elif opt_lower == "adamp": |
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) |
|
elif opt_lower == "sgdp": |
|
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == "adadelta": |
|
optimizer = optim.Adadelta(parameters, **opt_args) |
|
elif opt_lower == "adafactor": |
|
if not learning_rate: |
|
opt_args["lr"] = None |
|
optimizer = Adafactor(parameters, **opt_args) |
|
elif opt_lower == "adahessian": |
|
optimizer = Adahessian(parameters, **opt_args) |
|
elif opt_lower == "rmsprop": |
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args) |
|
elif opt_lower == "rmsproptf": |
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args) |
|
elif opt_lower == "novograd": |
|
optimizer = NovoGrad(parameters, **opt_args) |
|
elif opt_lower == "nvnovograd": |
|
optimizer = NvNovoGrad(parameters, **opt_args) |
|
elif opt_lower == "fusedsgd": |
|
opt_args.pop("eps", None) |
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == "fusedmomentum": |
|
opt_args.pop("eps", None) |
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args) |
|
elif opt_lower == "fusedadam": |
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) |
|
elif opt_lower == "fusedadamw": |
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) |
|
elif opt_lower == "fusedlamb": |
|
optimizer = FusedLAMB(parameters, **opt_args) |
|
elif opt_lower == "fusednovograd": |
|
opt_args.setdefault("betas", (0.95, 0.98)) |
|
optimizer = FusedNovoGrad(parameters, **opt_args) |
|
else: |
|
assert False and "Invalid optimizer" |
|
raise ValueError |
|
|
|
if len(opt_split) > 1: |
|
if opt_split[0] == "lookahead": |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|