cawacci's picture
ver 0.7 for test
ff614e3
raw
history blame
33.2 kB
# --------------------------------------
# Libraries
# --------------------------------------
import os
import time
import gc # メモリ解放
import re # 正規表現で文章をクリーンアップ
# HuggingFace
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# OpenAI
import openai
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
# LangChain
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import VectorDBQA
from langchain.vectorstores import Chroma
from langchain import PromptTemplate, ConversationChain
from langchain.chains.question_answering import load_qa_chain # QA Chat
from langchain.document_loaders import SeleniumURLLoader # URL取得
from langchain.docstore.document import Document # テキストをドキュメント化
# from langchain.memory import ConversationBufferWindowMemory # チャット履歴
from langchain.memory import ConversationSummaryBufferMemory # チャット履歴
from typing import Any
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Gradio
import gradio as gr
# PyPdf
from pypdf import PdfReader
# test
import langchain # (debug=Trueにするため)
# --------------------------------------
# ユーザ別セッションの変数値を記録するクラス
#  (参考)https://blog.shikoan.com/gradio-state/
# --------------------------------------
class SessionState:
def __init__(self):
# Hugging Face
self.tokenizer = None
self.pipe = None
self.model = None
# LangChain
self.llm = None
self.embeddings = None
self.current_model = ""
self.current_embedding = ""
self.db = None # Vector DB
self.memory = None # Langchain Chat Memory
self.qa_chain = None # load_qa_chain
self.conversation_chain = None # ConversationChain
self.embedded_urls = []
# Apps
self.dialogue = [] # Recent Chat History for display
# --------------------------------------
# Empty Cache
# --------------------------------------
def cache_clear(self):
if torch.cuda.is_available():
torch.cuda.empty_cache() # GPU Memory Clear
gc.collect() # CPU Memory Clear
# --------------------------------------
# Clear Models (llm: llm model, embd: embeddings, db: vectordb)
# --------------------------------------
def clear_memory(self, llm=False, embd=False, db=False):
# DB
if db and self.db:
self.db.delete_collection()
self.db = None
self.embedded_urls = []
# Embeddings model
if llm or embd:
self.embeddings = None
self.current_embedding = ""
self.qa_chain = None
# LLM model
if llm:
self.llm = None
self.pipe = None
self.model = None
self.current_model = ""
self.tokenizer = None
self.memory = None
self.chat_history = [] # ←必要性を要検証
self.cache_clear()
# --------------------------------------
# Load Chat History as a list
# --------------------------------------
def load_chat_history(self) -> list:
chat_history = []
try:
chat_memory = self.memory.load_memory_variables({})['chat_history']
except KeyError:
return chat_history
# チャット履歴をペアごとに読み取る
for i in range(0, len(chat_memory), 2):
user_message = chat_memory[i].content
ai_message = ""
if i + 1 < len(chat_memory):
ai_message = chat_memory[i + 1].content
chat_history.append([user_message, ai_message])
return chat_history
# --------------------------------------
# 自作TextSplitter(テキストをLLMのトークン数内に分割)
# (参考)https://www.sato-susumu.com/entry/2023/04/30/131338
#  → 「!」、「?」、「)」、「.」、「!」、「?」、「,」などを追加
# --------------------------------------
class JPTextSplitter(RecursiveCharacterTextSplitter):
def __init__(self, **kwargs: Any):
separators = ["\n\n", "\n", "。", "!", "?", ")","、", ".", "!", "?", ",", " ", ""]
super().__init__(separators=separators, **kwargs)
# チャンクの分割
chunk_size = 512
chunk_overlap = 35
text_splitter = JPTextSplitter(
chunk_size = chunk_size, # チャンクの最大文字数
chunk_overlap = chunk_overlap, # オーバーラップの最大文字数
)
# --------------------------------------
# DeepL でメモリを翻訳しトークン数を削減(OpenAIモデル利用時)
# --------------------------------------
DEEPL_API_ENDPOINT = "https://api-free.deepl.com/v2/translate"
DEEPL_API_KEY = "YOUR_DEEPL_API_KEY"
def deepl_memory(ss: SessionState) -> (SessionState):
if ss.current_model == "gpt-3.5-turbo":
# メモリから会話履歴を取得
user_message = ss.memory.chat_memory.messages[-1][0].content
ai_message = ss.memory.chat_memory.messages[-1][1].content
text = [user_message, ai_message]
# DeepL設定
params = {
"auth_key": DEEPL_API_KEY,
"text": text,
"target_lang": "EN",
"source_lang": "JA"
}
request = requests.post(DEEPL_API_ENDPOINT, data=params)
request.raise_for_status() # 応答のステータスコードがエラーの場合は例外を発生させます。
response = request.json()
# JSONから翻訳文を取得
user_message = response["translations"][0]["text"]
ai_message = response["translations"][1]["text"]
# memoryの最後の会話を削除し、翻訳文を追加
ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-1]
ss.memory.chat_memory.add_user_message(user_message)
ss.memory.chat_memory.add_ai_message(ai_message)
return ss
# --------------------------------------
# LangChain カスタムプロンプト各種
# llama tokenizer
# https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/
# OpenAI tokenizer
# https://platform.openai.com/tokenizer
# --------------------------------------
# --------------------------------------
# Conversation Chain Template
# --------------------------------------
# Tokens: OpenAI 104/ Llama 105 <- In Japanese: Tokens: OpenAI 191/ Llama 162
sys_chat_message = """
The following is a conversation between an AI concierge and a customer.
The AI understands what the customer wants to know from the conversation history and the latest question,
and gives many specific details in Japanese. If the AI does not know the answer to a question, it does not
make up an answer and says "誠に申し訳ございませんが、その点についてはわかりかねます".
""".replace("\n", "")
chat_common_format = """
===
Question: {query}
===
Conversation History:
{chat_history}
===
日本語の回答:"""
chat_template_std = f"{sys_chat_message}{chat_common_format}"
chat_template_llama2 = f"<s>[INST] <<SYS>>{sys_chat_message}<</SYS>>{chat_common_format}[/INST]"
# --------------------------------------
# QA Chain Template
# --------------------------------------
# Tokens: OpenAI 113/ Llama 111 <- In Japanese: Tokens: OpenAI 256/ Llama 225
sys_qa_message = """
You are an AI concierge who carefully answers questions from customers based on references.
You understand what the customer wants to know from the "Conversation History" and "Question",
and give a specific answer in Japanese using sentences extracted from the following references.
If you do not know the answer, do not make up an answer and reply,
"誠に申し訳ございませんが、その点についてはわかりかねます".
""".replace("\n", "")
qa_common_format = """
===
Question:
{query}
===
References:
{context}
===
Conversation History:
{chat_history}
===
日本語の回答:"""
qa_template_std = f"{sys_qa_message}{qa_common_format}"
qa_template_llama2 = f"<s>[INST] <<SYS>>{sys_qa_message}<</SYS>>{qa_common_format}[/INST]"
# --------------------------------------
# ConversationSummaryBufferMemoryの要約プロンプト
# ソース → https://github.com/langchain-ai/langchain/blob/894c272a562471aadc1eb48e4a2992923533dea0/langchain/memory/prompt.py#L26-L49
# --------------------------------------
# Tokens: OpenAI 212/ Llama 214 <- In Japanese: Tokens: OpenAI 397/ Llama 297
conversation_summary_template = """
Using the example as a guide, compose a summary in English that gives an overview of the conversation by summarizing the "current summary" and the "new conversation".
===
Example
[Current Summary] Customer asks AI what it thinks about Artificial Intelligence, AI says Artificial Intelligence is a good tool.
[New Conversation]
Human: なぜ人工知能が良いツールだと思いますか?
AI: 人工知能は「人間の可能性を最大限に引き出すことを助ける」からです。
[New Summary] Customer asks what you think about Artificial Intelligence, and AI responds that it is a good force that helps humans reach their full potential.
===
[Current Summary] {summary}
[New Conversation]
{new_lines}
[New Summary]
""".strip()
# モデル読み込み
def load_models(
ss: SessionState,
model_id: str,
embedding_id: str,
openai_api_key: str,
load_in_8bit: bool,
verbose: bool,
temperature: float,
min_length: int,
max_new_tokens: int,
top_k: int,
top_p: float,
repetition_penalty: float,
num_return_sequences: int,
) -> (SessionState, str):
# --------------------------------------
# OpenAI API KEYの確認
# --------------------------------------
if (model_id == "gpt-3.5-turbo" or embedding_id == "text-embedding-ada-002"):
# 前処理
if not os.environ["OPENAI_API_KEY"]:
status_message = "❌ OpenAI API KEY を設定してください"
return ss, status_message
# --------------------------------------
# LLMの設定
# --------------------------------------
# OpenAI Model
if model_id == "gpt-3.5-turbo":
ss.clear_memory(llm=True, db=True)
ss.llm = ChatOpenAI(
model_name = model_id,
temperature = temperature,
verbose = verbose,
max_tokens = max_new_tokens,
)
# Hugging Face GPT Model
else:
ss.clear_memory(llm=True, db=True)
if model_id == "rinna/bilingual-gpt-neox-4b-instruction-sft":
ss.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
else:
ss.tokenizer = AutoTokenizer.from_pretrained(model_id)
ss.model = AutoModelForCausalLM.from_pretrained(
model_id,
load_in_8bit = load_in_8bit,
torch_dtype = torch.float16,
device_map = "auto",
)
ss.pipe = pipeline(
"text-generation",
model = ss.model,
tokenizer = ss.tokenizer,
min_length = min_length,
max_new_tokens = max_new_tokens,
do_sample = True,
top_k = top_k,
top_p = top_p,
repetition_penalty = repetition_penalty,
num_return_sequences = num_return_sequences,
temperature = temperature,
)
ss.llm = HuggingFacePipeline(pipeline=ss.pipe)
# --------------------------------------
# 埋め込みモデルの設定
# --------------------------------------
if ss.current_embedding == embedding_id:
return
# Reset embeddings and vectordb
ss.clear_memory(embd=True, db=True)
if embedding_id == "None":
pass
# OpenAI
elif embedding_id == "text-embedding-ada-002":
ss.embeddings = OpenAIEmbeddings()
# Hugging Face
else:
ss.embeddings = HuggingFaceEmbeddings(model_name=embedding_id)
# --------------------------------------
# 現在のモデル名を SessionStateオブジェクトに保存
#---------------------------------------
ss.current_model = model_id
ss.current_embedding = embedding_id
# Status Message
status_message = "✅ LLM: " + ss.current_model + ", embeddings: " + ss.current_embedding
return ss, status_message
def conversation_prep(ss: SessionState) -> SessionState:
if ss.conversation_chain is None:
human_prefix = "Human: "
ai_prefix = "AI: "
chat_template = chat_template_std
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
# Rinnaモデル向けの設定(改行コード修正、メモリ用prefix (公式ページ参照)
chat_template = chat_template.replace("\n", "<NL>")
human_prefix = "ユーザー: "
ai_prefix = "システム: "
elif ss.current_model.startswith("elyza/ELYZA-japanese-Llama-2-7b"):
chat_template = chat_template_llama2
chat_prompt = PromptTemplate(input_variables=['query', 'chat_history'], template=chat_template)
if ss.memory is None:
conversation_summary_prompt = PromptTemplate(input_variables=['summary', 'new_lines'], template=conversation_summary_template)
ss.memory = ConversationSummaryBufferMemory(
llm = ss.llm,
memory_key = "chat_history",
input_key = "query",
output_key = "output_text",
return_messages = True,
human_prefix = human_prefix,
ai_prefix = ai_prefix,
max_token_limit = 512,
prompt = conversation_summary_prompt,
)
ss.conversation_chain = ConversationChain(
llm=ss.llm,
prompt = chat_prompt,
memory = ss.memory
)
return ss
def initialize_db(ss: SessionState) -> SessionState:
# client = chromadb.PersistentClient(path="./db")
ss.db = Chroma(
collection_name = "user_reference",
embedding_function = ss.embeddings,
# client = client
)
return ss
def embedding_process(ss: SessionState, ref_documents: Document) -> SessionState:
# --------------------------------------
# 文章構成と不要な文字列の削除
# --------------------------------------
for i in range(len(ref_documents)):
content = ref_documents[i].page_content.strip()
# --------------------------------------
# PDFの場合は読み取りエラー対策で文書修正を強めに実施
# --------------------------------------
if ".pdf" in ref_documents[i].metadata['source']:
pdf_replacement_sets = [
('\n ', '**PLACEHOLDER+SPACE**'),
('\n\u3000', '**PLACEHOLDER+SPACE**'),
('.\n', '。**PLACEHOLDER**'),
(',\n', '。**PLACEHOLDER**'),
('?\n', '。**PLACEHOLDER**'),
('!\n', '。**PLACEHOLDER**'),
('!\n', '。**PLACEHOLDER**'),
('。\n', '。**PLACEHOLDER**'),
('!\n', '!**PLACEHOLDER**'),
(')\n', '!**PLACEHOLDER**'),
(']\n', '!**PLACEHOLDER**'),
('?\n', '?**PLACEHOLDER**'),
(')\n', '?**PLACEHOLDER**'),
('】\n', '?**PLACEHOLDER**'),
]
for original, replacement in pdf_replacement_sets:
content = content.replace(original, replacement)
content = content.replace(" ", "")
# --------------------------------------
# 不要文字列・空白の削除
remove_texts = ["\n", "\r", " "]
for remove_text in remove_texts:
content = content.replace(remove_text, "")
# タブや連続空白をシングルスペースに変換
replace_texts = ["\t", "\u3000"]
for replace_text in replace_texts:
content = content.replace(replace_text, " ")
# PDFの正当な改行をもとに戻す。
if ".pdf" in ref_documents[i].metadata['source']:
content = content.replace('**PLACEHOLDER**', '\n').replace('**PLACEHOLDER+SPACE**', '\n ')
ref_documents[i].page_content = content
# --------------------------------------
# チャンクに分割
texts = text_splitter.split_documents(ref_documents)
# --------------------------------------
# multi-e5 モデルの学習環境に合わせて文言を追加
# https://hironsan.hatenablog.com/entry/2023/07/05/073150
# --------------------------------------
if ss.current_embedding == "intfloat/multilingual-e5-large":
for i in range(len(texts)):
texts[i].page_content = "passage:" + texts[i].page_content
# vectordb の初期化
if ss.db is None:
ss = initialize_db(ss)
# db に埋め込み
# ss.db = Chroma.from_documents(texts, ss.embeddings)
ss.db.add_documents(documents=texts, embedding=ss.embeddings)
# --------------------------------------
# QAチェーンの設定
# --------------------------------------
if ss.qa_chain is None:
# QAメモリ
human_prefix = "Human: "
ai_prefix = "AI: "
qa_template = qa_template_std
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
# Rinnaモデル向けの設定(改行コード修正、メモリ用prefix (公式ページ参照)
qa_template = qa_template.replace("\n", "<NL>")
human_prefix = "ユーザー: "
ai_prefix = "システム: "
elif ss.current_model.startswith("elyza/ELYZA-japanese-Llama-2-7b"):
qa_template = qa_template_llama2
qa_prompt = PromptTemplate(input_variables=['context', 'query', 'chat_history'], template=qa_template)
if ss.memory is None:
conversation_summary_prompt = PromptTemplate(input_variables=['summary', 'new_lines'], template=conversation_summary_template)
ss.memory = ConversationSummaryBufferMemory(
llm = ss.llm,
memory_key = "chat_history",
input_key = "query",
output_key = "output_text",
return_messages = True,
human_prefix = human_prefix,
ai_prefix = ai_prefix,
max_token_limit = 512,
prompt = conversation_summary_prompt,
)
ss.qa_chain = load_qa_chain(ss.llm, chain_type="stuff", memory=ss.memory, prompt=qa_prompt)
return ss
def embed_ref(ss: SessionState, urls: str, fileobj: list, header_lim: int, footer_lim: int) -> (SessionState, str):
url_flag = "-"
pdf_flag = "-"
# --------------------------------------
# URLの読み込みとvectordb登録
# --------------------------------------
# URLリストの前処理(リスト化、重複削除、非URL排除)
urls = list({url for url in urls.split("\n") if url and "://" in url})
if urls:
# 登録済みURL(ss.embedded_urls)との重複を排除。登録済みリストに登録
urls = [url for url in urls if url not in ss.embedded_urls]
ss.embedded_urls.extend(urls)
# ウェブページの読み込み
loader = SeleniumURLLoader(urls=urls)
ref_documents = loader.load()
# 埋め込み処理の実行
ss = embedding_process(ss, ref_documents)
url_flag = "✅ 登録済"
# --------------------------------------
# PDFのヘッダーとフッターを除去してvectordb登録
#  https://pypdf.readthedocs.io/en/stable/user/extract-text.html
# --------------------------------------
if fileobj is None:
pass
else:
# ファイル名リストを取得
pdf_paths = []
for path in fileobj:
pdf_paths.append(path.name)
# リストの初期化
ref_documents = []
# 各PDFファイルを読み込み
for pdf_path in pdf_paths:
pdf = PdfReader(pdf_path)
body = []
def visitor_body(text, cm, tm, font_dict, font_size):
y = tm[5]
if y > footer_lim and y < header_lim: # y座標がヘッダーとフッターの間にあるかどうかを確認
parts.append(text)
for page in pdf.pages:
parts = []
page.extract_text(visitor_text=visitor_body)
body.append("".join(parts))
body = "\n".join(body)
# パスからファイル名のみを取得
filename = os.path.basename(pdf_path)
# 取得テキスト → LangChain ドキュメント変換
ref_documents.append(Document(page_content=body, metadata={"source": filename}))
# 埋め込み処理の実行
ss = embedding_process(ss, ref_documents)
pdf_flag = "✅ 登録済"
langchain.debug=True
status_message = "URL: " + url_flag + " / PDF: " + pdf_flag
return ss, status_message
def clear_db(ss: SessionState) -> (SessionState, str):
try:
ss.db.delete_collection()
status_message = "✅ 参照データを削除しました。"
except NameError:
status_message = "❌ 参照データが登録されていません。"
return ss, status_message
# ----------------------------------------------------------------------------
# query入力 ▶ [def user] ▶ [ def bot ] ▶ [def show_response] ▶ チャットボット画面
# ⬇ ⬇ ⬆
# チャットボット画面 [qa_predict / conversation_predict]
# ----------------------------------------------------------------------------
def user(ss: SessionState, query) -> (SessionState, list):
# 会話履歴が一定数を超えた場合は、最初の履歴を削除する
if len(ss.dialogue) > 10:
ss.dialogue.pop(0)
ss.dialogue = ss.dialogue + [(query, None)] # 会話履歴(None はボットの回答欄=空欄)
chat_history = ss.dialogue
# チャット画面=chat_history
return ss, chat_history
def bot(ss: SessionState, query, qa_flag) -> (SessionState, str):
if qa_flag is True:
ss = qa_predict(ss, query) # LLMで回答を生成
else:
ss = conversation_prep(ss)
ss = chat_predict(ss, query)
return ss, "" # ssとquery欄(空欄)
def chat_predict(ss: SessionState, query) -> SessionState:
response = ss.conversation_chain.predict(input=query)
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss
def qa_predict(ss: SessionState, query) -> SessionState:
# Rinnaモデル向けの設定(クエリの改行コード修正)
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
query = query.strip().replace("\n", "<NL>")
else:
query = query.strip()
# multilingual-e5向けのクエリ文言prefix
if ss.current_embedding == "intfloat/multilingual-e5-large":
db_query_str = "query: " + query
else:
db_query_str = query
# DBから関連文書と出典を抽出
docs = ss.db.similarity_search(db_query_str, k=2)
sources= "\n\n[Sources]\n" + '\n - '.join(list(set(doc.metadata['source'] for doc in docs if 'source' in doc.metadata)))
# Rinnaモデル向けの設定(抽出文書の改行コード修正)
if ss.current_model == "rinna/bilingual-gpt-neox-4b-instruction-sft":
for i in range(len(docs)):
docs[i].page_content = docs[i].page_content.strip().replace("\n", "<NL>")
# 回答の生成(最大3回の試行)
for _ in range(3):
result = ss.qa_chain({"input_documents": docs, "query": query})
result["output_text"] = result["output_text"].replace("<NL>", "\n").strip("...").strip("回答:").strip()
# result["output_text"]が空欄でない場合、メモリーを更新して返す
if result["output_text"] != "":
response = result["output_text"] + sources
ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-1] # 最後の会話を削除
ss.memory.chat_memory.add_user_message(query)
ss.memory.chat_memory.add_ai_message(response)
ss.dialogue[-1] = (ss.dialogue[-1][0], response)
return ss
else:
# 空欄の場合は直近の履歴を削除してやり直し
ss.memory.chat_memory.messages = ss.memory.chat_memory.messages[:-1]
# 3回の試行後も空欄の場合
response = "3回試行しましたが、情報製生成できませんでした。"
if sources != "":
response += "参考文献の抽出には成功していますので、言語モデルを変えてお試しください。"
# ユーザーメッセージと AI メッセージの追加
ss.memory.chat_memory.add_user_message(query.replace("<NL>", "\n"))
ss.memory.chat_memory.add_ai_message(response)
ss.dialogue[-1] = (ss.dialogue[-1][0], response) # 会話履歴
return ss
# 回答を1文字ずつチャット画面に表示する
def show_response(ss: SessionState) -> str:
# chat_history = ss.load_chat_history() # メモリから会話履歴をリスト型で取得
# response = chat_history[-1][1] # メモリから最新の会話[-1]を取得し、チャットボットの回答[1]を退避
# chat_history[-1][1] = "" # 逐次表示のため、チャットボットの回答[1]を空にする
chat_history = [list(item) for item in ss.dialogue] # タプルをリストに変換して、メモリから会話履歴を取得
response = chat_history[-1][1] # メモリから最新の会話[-1]を取得し、チャットボットの回答[1]を退避
chat_history[-1][1] = "" # 逐次表示のため、チャットボットの回答[1]を空にする
for character in response:
chat_history[-1][1] += character
time.sleep(0.05)
yield chat_history
with gr.Blocks() as demo:
# ユーザ別セッションメモリのインスタンス化(リロードでリセット)
ss = gr.State(SessionState())
# --------------------------------------
# API KEY をセット/クリアする関数
# --------------------------------------
def openai_api_setfn(openai_api_key) -> str:
if not openai_api_key or not openai_api_key.startswith("sk-") or len(openai_api_key) < 50:
os.environ["OPENAI_API_KEY"] = ""
status_message = "❌ 有効なAPIキーを入力してください"
return status_message
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
status_message = "✅ APIキーを設定しました"
return status_message
def openai_api_clsfn(ss) -> (str, str):
openai_api_key = ""
os.environ["OPENAI_API_KEY"] = ""
status_message = "✅ APIキーの削除が完了しました"
return status_message, ""
# --------------------------------------
# 回答の継続ボタン
# --------------------------------------
def continue_pred():
query = "回答を続けてください"
return query
with gr.Tabs():
# --------------------------------------
# Setting Tab
# --------------------------------------
with gr.TabItem("1. LLM設定"):
with gr.Row():
model_id = gr.Dropdown(
choices=[
'elyza/ELYZA-japanese-Llama-2-7b-fast-instruct',
'rinna/bilingual-gpt-neox-4b-instruction-sft',
'gpt-3.5-turbo',
],
value="elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
label='LLM model',
interactive=True,
)
with gr.Row():
embedding_id = gr.Dropdown(
choices=[
'intfloat/multilingual-e5-large',
'sonoisa/sentence-bert-base-ja-mean-tokens-v2',
'oshizo/sbert-jsnli-luke-japanese-base-lite',
'text-embedding-ada-002',
"None"
],
value="sonoisa/sentence-bert-base-ja-mean-tokens-v2",
label = 'Embedding model',
interactive=True,
)
with gr.Row():
with gr.Column(scale=19):
openai_api_key = gr.Textbox(label="OpenAI API Key (Optional)", interactive=True, type="password", value="", placeholder="Your OpenAI API Key for OpenAI models.", max_lines=1)
with gr.Column(scale=1):
openai_api_set = gr.Button(value="Set API KEY", size="sm")
openai_api_cls = gr.Button(value="Delete API KEY", size="sm")
# 詳細設定(折りたたみ)
with gr.Accordion(label="Advanced Setting", open=False):
with gr.Row():
with gr.Column():
load_in_8bit = gr.Checkbox(label="8bit Quantize (HF)", value=True, interactive=True)
verbose = gr.Checkbox(label="Verbose (OpenAI, HF)", value=True, interactive=False)
with gr.Column():
temperature = gr.Slider(label='Temperature (OpenAI, HF)', minimum=0.0, maximum=1.0, step=0.1, value=0.2, interactive=True)
with gr.Column():
min_length = gr.Slider(label="min_length (HF)", minimum=1, maximum=100, step=1, value=10, interactive=True)
with gr.Column():
max_new_tokens = gr.Slider(label="max_tokens(OpenAI), max_new_tokens(HF)", minimum=1, maximum=1024, step=1, value=256, interactive=True)
with gr.Column():
top_k = gr.Slider(label='top_k (HF)', minimum=1, maximum=100, step=1, value=40, interactive=True)
with gr.Column():
top_p = gr.Slider(label='top_p (HF)', minimum=0.01, maximum=0.99, step=0.01, value=0.92, interactive=True)
with gr.Column():
repetition_penalty = gr.Slider(label='repetition_penalty (HF)', minimum=0.5, maximum=2, step=0.1, value=1.2, interactive=True)
with gr.Column():
num_return_sequences = gr.Slider(label='num_return_sequences (HF)', minimum=1, maximum=20, step=1, value=3, interactive=True)
with gr.Row():
with gr.Column(scale=2):
config_btn = gr.Button(value="Configure")
with gr.Column(scale=13):
status_cfg = gr.Textbox(show_label=False, interactive=False, value="モデルを設定してください", container=False, max_lines=1)
# ボタン等のアクション設定
openai_api_set.click(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
openai_api_cls.click(openai_api_clsfn, inputs=[openai_api_key], outputs=[status_cfg, openai_api_key], show_progress="full")
openai_api_key.submit(openai_api_setfn, inputs=[openai_api_key], outputs=[status_cfg], show_progress="full")
config_btn.click(
fn = load_models,
inputs = [ss, model_id, embedding_id, openai_api_key, load_in_8bit, verbose, temperature,
min_length, max_new_tokens, top_k, top_p, repetition_penalty, num_return_sequences],
outputs = [ss, status_cfg],
queue = True,
show_progress = "full"
)
# --------------------------------------
# Reference Tab
# --------------------------------------
with gr.TabItem("2. References"):
urls = gr.TextArea(
max_lines = 60,
show_label=False,
info = "List any reference URLs for Q&A retrieval.",
placeholder = "https://blog.kikagaku.co.jp/deep-learning-transformer\nhttps://note.com/elyza/n/na405acaca130",
interactive=True,
)
with gr.Row():
pdf_paths = gr.File(label="PDFs", height=150, min_width=60, scale=7, file_types=[".pdf"], file_count="multiple", interactive=True)
header_lim = gr.Number(label="Header (pt)", step=1, value=792, precision=0, min_width=70, scale=1, interactive=True)
footer_lim = gr.Number(label="Footer (pt)", step=1, value=0, precision=0, min_width=70, scale=1, interactive=True)
pdf_ref = gr.Textbox(show_label=False, value="A4 Size:\n(下)0-792pt(上)\n *28.35pt/cm", container=False, scale=1, interactive=False)
with gr.Row():
ref_set_btn = gr.Button(value="コンテンツ登録", scale=1)
ref_clear_btn = gr.Button(value="登録データ削除", scale=1)
status_ref = gr.Textbox(show_label=False, interactive=False, value="参照データ未登録", container=False, max_lines=1, scale=18)
ref_set_btn.click(fn=embed_ref, inputs=[ss, urls, pdf_paths, header_lim, footer_lim], outputs=[ss, status_ref], queue=True, show_progress="full")
ref_clear_btn.click(fn=clear_db, inputs=[ss], outputs=[ss, status_ref], show_progress="full")
# --------------------------------------
# Chatbot Tab
# --------------------------------------
with gr.TabItem("3. Q&A Chat"):
chat_history = gr.Chatbot([], elem_id="chatbot").style(height=600, color_map=('green', 'gray'))
with gr.Row():
with gr.Column(scale=95):
query = gr.Textbox(
show_label=False,
placeholder="Send a message with [Shift]+[Enter] key.",
lines=4,
container=False,
autofocus=True,
interactive=True,
)
with gr.Column(scale=5):
qa_flag = gr.Checkbox(label="QA mode", value=True, min_width=60, interactive=True)
query_send_btn = gr.Button(value="▶")
# gr.Examples(["機械学習について説明してください"], inputs=[query])
query.submit(user, [ss, query], [ss, chat_history]).then(bot, [ss, query, qa_flag], [ss, query]).then(show_response, [ss], [chat_history])
query_send_btn.click(user, [ss, query], [ss, chat_history]).then(bot, [ss, query, qa_flag], [ss, query]).then(show_response, [ss], [chat_history])
if __name__ == "__main__":
demo.queue(concurrency_count=5)
demo.launch(debug=True, inbrowser=True)