Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app.py +120 -0
- glm_huggingface.py +129 -0
- install.sh +4 -0
- open_ai.py +36 -0
- paths.py +20 -0
- prompt_loader.py +25 -0
- prompts_enc.py +7 -0
- requirements.txt +6 -0
- splash.webp +0 -0
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from glm_huggingface import run_glm
|
| 4 |
+
from open_ai import run_openai
|
| 5 |
+
from prompt_loader import get_prompt
|
| 6 |
+
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
if os.getenv("OPENAI_API_KEY",False):
|
| 12 |
+
print ("using OPENAI_API_KEY")
|
| 13 |
+
run_llm=run_openai
|
| 14 |
+
else:
|
| 15 |
+
print ("using glm from huggingface")
|
| 16 |
+
run_llm=run_glm
|
| 17 |
+
|
| 18 |
+
PROMPT_STYLE = get_prompt("PROMPT_STYLE")
|
| 19 |
+
PROMPT_TEXT = get_prompt("PROMPT_TEXT")
|
| 20 |
+
PROMPT_TEXT2 = get_prompt("PROMPT_TEXT2")
|
| 21 |
+
SYSPROMPT_STYLE = get_prompt("SYSPROMPT_STYLE")
|
| 22 |
+
SYSPROMPT_TEXT = get_prompt("SYSPROMPT_TEXT")
|
| 23 |
+
|
| 24 |
+
def get_song_output(artist, song_text):
|
| 25 |
+
try:
|
| 26 |
+
# Get style music from artist
|
| 27 |
+
style_glm = run_openai(f"Describe {artist}", sys_prompt=SYSPROMPT_STYLE)
|
| 28 |
+
if style_glm:
|
| 29 |
+
style = style_glm
|
| 30 |
+
else:
|
| 31 |
+
style = ''
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"ERROR infer llm: {e}")
|
| 34 |
+
style = ''
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
text_glm = run_openai(f"{PROMPT_TEXT}\n{style}\n#Text song:\n{song_text}\n{PROMPT_TEXT2}", sys_prompt=SYSPROMPT_TEXT)
|
| 38 |
+
if text_glm:
|
| 39 |
+
text = text_glm
|
| 40 |
+
else:
|
| 41 |
+
text = ''
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"ERROR infer llm: {e}")
|
| 44 |
+
text = ''
|
| 45 |
+
|
| 46 |
+
return style, text
|
| 47 |
+
|
| 48 |
+
# Define translatable strings
|
| 49 |
+
english_strings = {
|
| 50 |
+
"title": "SUNO style generator and sound format",
|
| 51 |
+
"performer_label": "Performer Name",
|
| 52 |
+
"song_text_label": "Song Text",
|
| 53 |
+
"language_english": "English",
|
| 54 |
+
"language_russian": "Russian",
|
| 55 |
+
"generate_button": "Generate",
|
| 56 |
+
"style_label": "Style",
|
| 57 |
+
"song_result_label": "Song Text"
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
russian_strings = {
|
| 61 |
+
"title": "Название: SUNO стайл генератор и звуковой формат",
|
| 62 |
+
"performer_label": "Имя исполнителя: ",
|
| 63 |
+
"song_text_label": "Текст песни: ",
|
| 64 |
+
"language_english": "Английский: ",
|
| 65 |
+
"language_russian": "Русский: ",
|
| 66 |
+
"generate_button": "Сгенерировать: ",
|
| 67 |
+
"style_label": "Стиль: ",
|
| 68 |
+
"song_result_label": "Текст песни: "
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
current_language = "English"
|
| 72 |
+
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
with gr.Row(elem_id="header", equal_height=True):
|
| 75 |
+
# Левая колонка (логотип 100x100)
|
| 76 |
+
with gr.Column(scale=0, min_width=100):
|
| 77 |
+
gr.Image(
|
| 78 |
+
value="splash.webp",
|
| 79 |
+
width=100,
|
| 80 |
+
height=100,
|
| 81 |
+
show_label=False,
|
| 82 |
+
interactive=False,
|
| 83 |
+
show_download_button=False,
|
| 84 |
+
show_fullscreen_button=False,
|
| 85 |
+
elem_id="logo"
|
| 86 |
+
)
|
| 87 |
+
# Правая колонка (markdown на всю ширину)
|
| 88 |
+
with gr.Column(scale=1):
|
| 89 |
+
gr.Markdown(f"# {english_strings['title']}\nby <a href='https://boosty.to/aicave/donate'>AiCave</a>")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
with gr.Column():
|
| 93 |
+
# Input fields
|
| 94 |
+
name_input = gr.Textbox(label=english_strings["performer_label"],lines=5, max_lines=10)
|
| 95 |
+
text_input = gr.Textbox(label=english_strings["song_text_label"], lines=25, max_lines=25)
|
| 96 |
+
# language_radio = gr.Radio(["English", "Russian"], label=english_strings["language_english"] + "/" + english_strings["language_russian"])
|
| 97 |
+
generate_button = gr.Button(english_strings["generate_button"])
|
| 98 |
+
|
| 99 |
+
with gr.Column():
|
| 100 |
+
# Output fields
|
| 101 |
+
style_output = gr.Textbox(label=english_strings["style_label"],lines=5, max_lines=10,show_copy_button=True)
|
| 102 |
+
song_output = gr.Textbox(label=english_strings["song_result_label"], lines=28, max_lines=28,show_copy_button=True)
|
| 103 |
+
|
| 104 |
+
# Generate button click event - calls the get_song_output function
|
| 105 |
+
generate_button.click(
|
| 106 |
+
fn=get_song_output,
|
| 107 |
+
inputs=[name_input, text_input],
|
| 108 |
+
outputs=[style_output, song_output]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
demo.css = """
|
| 112 |
+
#header {
|
| 113 |
+
align-items: center;
|
| 114 |
+
padding: 0px 0px;
|
| 115 |
+
border-bottom: 0px solid #ddd;
|
| 116 |
+
}
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
demo.launch(quiet = False)
|
glm_huggingface.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import html
|
| 5 |
+
import re
|
| 6 |
+
from typing import Any, List, Optional
|
| 7 |
+
from paths import get_project_root
|
| 8 |
+
from gradio_client import Client # type: ignore
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def run_glm(prompt: str, sys_prompt: str) -> str:
|
| 12 |
+
"""
|
| 13 |
+
Run LLM using the GLM Gradio Space via gradio_client.
|
| 14 |
+
|
| 15 |
+
Environment variables (loaded from .env at the repo root if available):
|
| 16 |
+
- GLM_GRADIO_SPACE (default: "zai-org/GLM-4.5-Space")
|
| 17 |
+
- GLM_SYS_PROMPT (default mirrors the system prompt used in test_gradio.py)
|
| 18 |
+
- GLM_TEMPERATURE (float; default: 1)
|
| 19 |
+
- GLM_THINKING_ENABLED (bool; "1"/"true"/"yes" => True; default: False)
|
| 20 |
+
- GLM_API_NAME (default: "/chat_wrapper")
|
| 21 |
+
"""
|
| 22 |
+
text = (prompt or "").strip()
|
| 23 |
+
if not text:
|
| 24 |
+
return prompt
|
| 25 |
+
|
| 26 |
+
_load_env()
|
| 27 |
+
|
| 28 |
+
space = os.getenv("GLM_GRADIO_SPACE", "zai-org/GLM-4.5-Space").strip() or "zai-org/GLM-4.5-Space"
|
| 29 |
+
sys_prompt = sys_prompt or ""
|
| 30 |
+
|
| 31 |
+
api_name = os.getenv("GLM_API_NAME", "/chat_wrapper").strip() or "/chat_wrapper"
|
| 32 |
+
temperature = _coerce_float(os.getenv("GLM_TEMPERATURE", "1"), default=1.0)
|
| 33 |
+
thinking_enabled = _coerce_bool(os.getenv("GLM_THINKING_ENABLED", "0"))
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
client = Client(space)
|
| 37 |
+
result = client.predict(
|
| 38 |
+
msg=text,
|
| 39 |
+
sys_prompt=sys_prompt,
|
| 40 |
+
thinking_enabled=thinking_enabled,
|
| 41 |
+
temperature=temperature,
|
| 42 |
+
api_name=api_name,
|
| 43 |
+
)
|
| 44 |
+
content = _extract_clean_assistant_text(result).strip()
|
| 45 |
+
return content if content else prompt
|
| 46 |
+
except Exception as e:
|
| 47 |
+
_warn(f"GLM infer filed: {type(e).__name__}")
|
| 48 |
+
return prompt
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# --- Internal helpers ---------------------------------------------------------
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _warn(msg: str) -> None:
|
| 55 |
+
print(f"[llm_refiner_glm] {msg}", file=sys.stderr)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _load_env() -> None:
|
| 59 |
+
"""
|
| 60 |
+
Attempt to load .env from the project root (best-effort).
|
| 61 |
+
"""
|
| 62 |
+
env_path = get_project_root() / ".env"
|
| 63 |
+
try:
|
| 64 |
+
from dotenv import load_dotenv # type: ignore
|
| 65 |
+
load_dotenv(dotenv_path=env_path)
|
| 66 |
+
except Exception:
|
| 67 |
+
# If python-dotenv isn't installed, silently rely on existing process env
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def _coerce_bool(val: Any) -> bool:
|
| 72 |
+
s = str(val).strip().lower()
|
| 73 |
+
return s in {"1", "true", "yes", "on"}
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def _coerce_float(val: Any, default: float) -> float:
|
| 77 |
+
try:
|
| 78 |
+
return float(val)
|
| 79 |
+
except Exception:
|
| 80 |
+
return default
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def _clean_html_to_text(html_content: Any) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Convert HTML (possibly with entities) to plain text with minimal structure preserved via newlines.
|
| 86 |
+
Mirrors the robust cleaning approach used in test_gradio.py.
|
| 87 |
+
"""
|
| 88 |
+
if not isinstance(html_content, str):
|
| 89 |
+
html_content = str(html_content)
|
| 90 |
+
# Unescape entities first to normalize both raw and escaped HTML
|
| 91 |
+
text = html.unescape(html_content)
|
| 92 |
+
# Convert common block/line-break tags to newlines
|
| 93 |
+
text = re.sub(r"(?is)<br\s*/?>|</p>|</div>", "\n", text)
|
| 94 |
+
text = re.sub(r"(?is)<(script|style)\b.*?>.*?</\1>", "", text)
|
| 95 |
+
# Remove all remaining HTML tags (raw)
|
| 96 |
+
text = re.sub(r"(?s)<[^>]+>", "", text)
|
| 97 |
+
# Normalize whitespace: CRLF->LF, but don't remove empty lines or collapse whitespace
|
| 98 |
+
text = text.replace("\r\n", "\n").replace("\r", "\n")
|
| 99 |
+
# Preserve all lines including empty ones and whitespace
|
| 100 |
+
lines = text.splitlines()
|
| 101 |
+
# Join lines with single newlines, but keep existing whitespace
|
| 102 |
+
return "\n".join(lines)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def _extract_clean_assistant_text(result: Any) -> str:
|
| 106 |
+
"""
|
| 107 |
+
Extract 'assistant' messages from a Gradio chat result and return plain text without HTML.
|
| 108 |
+
|
| 109 |
+
Supports result formats:
|
| 110 |
+
- (messages, *rest)
|
| 111 |
+
- messages
|
| 112 |
+
Each message is a dict with 'role' and 'content'.
|
| 113 |
+
"""
|
| 114 |
+
# Normalize to a list of messages
|
| 115 |
+
if isinstance(result, tuple) and result:
|
| 116 |
+
messages = result[0]
|
| 117 |
+
else:
|
| 118 |
+
messages = result
|
| 119 |
+
|
| 120 |
+
clean_segments: List[str] = []
|
| 121 |
+
if isinstance(messages, list):
|
| 122 |
+
for m in messages:
|
| 123 |
+
if isinstance(m, dict) and m.get("role") == "assistant":
|
| 124 |
+
content = m.get("content", "")
|
| 125 |
+
clean_segments.append(_clean_html_to_text(content))
|
| 126 |
+
|
| 127 |
+
if not clean_segments:
|
| 128 |
+
return ""
|
| 129 |
+
return "\n\n".join(s for s in clean_segments if s)
|
install.sh
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
uv venv .venv --python=3.12
|
| 3 |
+
source .venv/bin/activate
|
| 4 |
+
uv pip install -r requirements.txt
|
open_ai.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
api_key = os.getenv("OPENAI_API_KEY","")
|
| 9 |
+
url = os.getenv("OPENAI_API_URL","https://api.openai.com/v1/")
|
| 10 |
+
model = os.getenv("OPENAI_API_MODEL","openai/gpt-oss-120b")
|
| 11 |
+
client = OpenAI(
|
| 12 |
+
api_key=api_key,
|
| 13 |
+
base_url=url
|
| 14 |
+
)
|
| 15 |
+
def run_openai(prompt: str, sys_prompt: str) -> str:
|
| 16 |
+
try:
|
| 17 |
+
response = client.chat.completions.create(
|
| 18 |
+
model=model,
|
| 19 |
+
max_tokens=5000,
|
| 20 |
+
temperature=1,
|
| 21 |
+
presence_penalty=0,
|
| 22 |
+
top_p=0.95,
|
| 23 |
+
messages=[
|
| 24 |
+
{
|
| 25 |
+
"role": "system",
|
| 26 |
+
"content": sys_prompt
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"role": "user",
|
| 30 |
+
"content": prompt
|
| 31 |
+
}
|
| 32 |
+
]
|
| 33 |
+
)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"LLM infer filed: {type(e).__name__}"
|
| 36 |
+
return response.choices[0].message.content
|
paths.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
__all__ = ["get_project_root", "get_data_dir", "data_file"]
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_project_root() -> Path:
|
| 9 |
+
"""Return the absolute path to the repository root (directory containing this file)."""
|
| 10 |
+
return Path(__file__).resolve().parent
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_data_dir() -> Path:
|
| 14 |
+
"""Return the absolute path to the data directory under the repository root."""
|
| 15 |
+
return get_project_root() / "data"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def data_file(name: str) -> Path:
|
| 19 |
+
"""Return the absolute path to a file inside the data directory."""
|
| 20 |
+
return get_data_dir() / name
|
prompt_loader.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from base64 import b64decode
|
| 2 |
+
from cryptography.fernet import Fernet
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import os
|
| 5 |
+
import prompts_enc
|
| 6 |
+
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
def get_prompt(name: str) -> str:
|
| 10 |
+
"""Возвращает раскодированный промпт по имени."""
|
| 11 |
+
key = os.getenv("PROMPT_KEY")
|
| 12 |
+
if not key:
|
| 13 |
+
raise RuntimeError("PROMPT_KEY отсутствует в переменных окружения")
|
| 14 |
+
|
| 15 |
+
if not hasattr(prompts_enc, name):
|
| 16 |
+
raise KeyError(f"Промпт '{name}' не найден")
|
| 17 |
+
|
| 18 |
+
fernet = Fernet(key.encode())
|
| 19 |
+
encoded = getattr(prompts_enc, name)
|
| 20 |
+
decoded = fernet.decrypt(b64decode(encoded)).decode()
|
| 21 |
+
return decoded
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
if __name__ == "__main__":
|
| 25 |
+
print(get_prompt("PROMPT_STYLE"))
|
prompts_enc.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ⚠️ AUTO-GENERATED — DO NOT EDIT
|
| 2 |
+
|
| 3 |
+
PROMPT_STYLE = 'Z0FBQUFBQm81WXdiRGpzZmhhS3pPTWgzZVhLWFk3LXlhY0VwTWYxZkxkQWE3NE5GbXBaY2VOTzZ3ZmM0Z2g0dkFpS1hneW1zY0NHaFVncmo1aUlqSWZaTTBOVUNtODAxSExxWHlwOTQwajhNb2pmX05ZRHpzOTBoVl9PWmUwaElISFIwWjZEeGhqMEFLb1lDNS1raEhWOXQyVHFsYjROUUVBdVRSWThURnNYWXJyYlR5Qy0xMTVDQ1l0LWFKdml4TDRQY0VwcVJncE52NGlwenlIX1hTdTJDcmZ4aEg4OGZFOVFnMldWSkRUaDkxN3ByXzN1VzFGazZwMHE4NnhESlQ0dVhTLWFmYzFoZWdOMGFic1JpcHlXRUt4UGYzYzctakxxNzdRQXpzb29rbmVCcEFWUENnal9vSWgtX1d5bWljdHU0X3NxQ0huWW0xb2lMV1FvaFhFNzQyVkhWMUFSaWxPNmdDOXM3UTc5REc3OTZqWFVTMWtXTndmc3BZT3N4ajBZNENBbmZheDM3aVBzSEROQ1JwOUppeUVabi11RWxLbTlKdGNXVHVpdVpFSXpYZW5La0h4SFVhSDd1SndJTXQ1SmxjcElQVHRXVENiLWVZczhVRXNzdDBjbEpGdks4YlkyZ1dfdnRsTVhHSmhtcVMxZ1BURVNrTEtjS1FNVzF0YzI4MlhuWXRYM3dBN2I4VWdKZ1BySG1qN3RZMEd2TE44THZkdmNBMEI2MjdRQk1TcVdwQXV3PQ=='
|
| 4 |
+
PROMPT_TEXT = 'Z0FBQUFBQm81WXdiMzVRckwtclplZmFFQ1ZiWFh6LVNWY3BqNy04emg4N203NzJFNWRJWXR5Y1lZMkg1R09iM19yeVFtN2NwdlpDcmdSdGxxZWVqaWs0UllWM29JRzczYnp0eDhqVDQ0dWZKN2thN1B2c1d0T1BaVzc2SU1xdjk4U1FUVXIyX0FvenhHc3JGZGw1azh6UmptTlp3SFVYT2pPd3FpalZ3Sm1HWWpEZ1p3SUdTSVZYZTZDUHJZbF96Y19EUG5ldUxNejYwS2p3aERGRFdvb29sQ3pjSEJZY1IwUTd2VkdsVW44d0czaDFqSDFucnJNaGhqMWM3aGpmcFN5RWJ3bFRvV2JWZWg0akk2MVNEVVRWb1pZaC15YmVWWWxsRjRmY0JXMThrLXA0Wk0tSGJOU00zMUhrV0RSZW01dmx1SFRjZzEybnFrV0lTTjU4Q0F2YUFnSElmUThCUFVCUUZING1iT1d2Y1NsallIcnF6ZzVzVHRuelNxSWpLYmZndkVndlhia0oyVDFvWW9LRjZQdHZPWUE3cklFaDBQdmczb1c0ckRPUzlXUlozWlQ5cmxjWjUwaWM3NDUyZW1CWi1RNVc4cnV0R0FGc0FaR1YtQ01CeHFJcXpDREZsU0cxVDFadzgybG4tcC1sYUlpVm1IUDRTMTZpNEF5Yks1NUkwaTVBV3NrZ0Y2S2hTaHIzQWtVeVREWGIxT0QyWHpRZ3J6eEhqcW5BYzdGMkpsd0puNF90OGR5Qy1LZmNjWjFzamloUGxRa0NaMTNLOWlWSC1KVnBvY0Y4U1JqNGQyU29VYkQ2aWZhTHB5bml2dzhIX0JRaHZvdjVwRGhUNGtMa21nMW4wT0N6LTg3MHVxR2ZuWFAwbFVRSnpoc05adWY0MGJaTURBbXh1a2hzbzBqMEwyT0FlSzFsbk1kSG1KWGZQa3NlTWR0UlFkRFdPZ3RLR2FjNGR3NGNLS1F4eEpMWi16V2RBSklwYTU3eDhWWlJma0paRThwa1B3ZVNRbGJNY1ZGSG9hYkpxWXFpSV9pX3BvZXR2b1JOT3VNNDNpVFBqdXRPelZKZThObUNNSmIzbnhqV1VSX1JvQ2hMTmtWVFg3UTBCUVkzMW1pYXFScWFCZjZfU0dOcFZuNzFzYnFKM0VvVU9ZWE92QV91dkNTTmtydFNhRER6anA1enA0aHE5eVBYQWlNNmlvNzVrWmxSRFVRQ3RWZ2VDRDFUM293c1p3NXg0em9xc01pQ0toTWV4eHBPcHk1QmNkalotbmFsSGhyaXJfQ1hvZ3ZiVUw3S0g2c1NXR3VlWkZ3RlVhYjNVNlMtOFV1d3l6Z1BOaE1UVVpPRVBGSmJHc19qZ1l1Tk1NQjl2aTlzTmliaVNiYWM2WUl3YVhaZ0JIUTBXdVg4Yk9zd1JIUmsydjQwMEZQR253SlhwYS1WSklLTXJvM2Jrc01LUXFFZHkyOWFwVTI4QnhURW9ENGdxbEFHS2c3ZVFoazBRMGJycG4yZXBaOGx1SXRhMEZlZUd5b3MwWU9ibTJWNkk3aklLTXFHSmUwRm5uSUZ3SFFvSmZ5Z2YxTEhwUmdaekxjMHBDZzhqenJqa04xSDFOQUY1UVFKMHFUTlpYN09lTEVyZHI4cm9Ub2ZHSE9NTWJ5SUJSQzI5aE55UlFJaWZrU2lLVll5RzNvLUtvNXhmbmtMRkVFZjFqdmdmeVpxZ2xOd2hvdjlBMm5pUTd1YnNvZzhXV2Q4S1B4VldiQTBwTzBYdldwSW5lYzI5eDJXdVBYM2FXWWJLVW00LUxwUFh4M2JMWVRpODdFYWxWTEtOODVZYUQwUVJjMm1hWmJ4bHNhcldpR0x6OHlOR3k5V2kybHBSQWVYaUt6RVZWMVdfV2x2bS0wRVlBNXlzQUNhUTU3TDlGQUJsbi01WFVvR1ExNzZjeUI5dnZ4ckZmak0yZV8wVDlITnJycnhEbDd1VDJCOGdXdEFPVXB0OE5LdzRyek5aaklVV0ZSS2dGT3dWWWpQMVhaSFJ1U1lvRGxlOFktQ2FSOEZEdUk3SDVwODhyeW9uNjdFUXp2cV8yMzR4dm9QSldOOW5nRWVHN3ZxTnN5ejkxMFRLUlFRUmFYemV2Y3BuaFpZT2VMRXZTRXVwT3djTzl5WFNOTmVFODFXV1VaRFBTdndvVE5TSG54QnRKNEl5MTVuZ3ZzcFhDMkttOXBuLWp0TkRwNjM1WkUyWnBaa21RWFUzM3BFenU4ZlRDMTVuakQzMW9iTkJSdnRTWk9EdjBBZ25MWnJjamNwUTYzb3ZRNXJvQklrNk5CM1hReEstdEJKVUtFZ3ZxRWdacDdTS2FqVXVxOHhsLWhWczlZSTJMalYxTTBHaVFDU3EtNWM1VEU4NjE3SzdHYVdVVFpBNTVucERodGdKemlTR1llQ3ZtVEdXYV92OE0xcnZMc292QXpLQVpELXV6LVM4R1ZzY3RJQnpDSW1NX285eEo3cmhSeW9udmkwRXQtVVlLakNzdk9jalNpRWM4VW82VC1oMVFpUXl3MWhLcVByTy1Bb3ZGWGxRUkdCSmFDTDUxUnhVREJtVEY1djZneVdxM3pmUVVqWkt5bGg0ZS1Udk5zX1p6WllrY2djSHFJLVBMdnoyWWdUMmZBRlMzYk5HRk45RVI3bTA3S1VIeXBMVUxjaERjbF80QXhacGg5b2c0Sk1GeUtOMWdTV0xmaFpyem00RW42dVJqUUVXRk1DclVSX3hmaHhxTkpCNEhNQ21pR3B1NWV2Y1FuSFBBR2ZqRENrUGxTQnB4bFJPSmNoVXU2dHlJd05QOTBTV1dfS01oVWZLdHNXMDZVSEdkVk9GSWY3eE92NTZKM0RKbUpubGV3cWVhajhiOUd6NzVySUl6SGgxS20tM0pnTWoyLUVQcy1HWGxDck5Yb0RvdnBGWVY2d1BFVENTdXlHb1Nlcld3NlpjZUNaX0I4VEpZX3plY2ZpWWtVRFlfTTRCNkJ2aWQyaHhmNGg3WmVuVkY1TVotVDJ2bTQyeTFhdU5WOTZFbE5ZbjJUVjJDMVFtOEhRWGp1ZW9NOUlCZElteGhLOVVrVkVPTTJoRVh5T0NlU0cwSlZ4VW1NZ25jQWxIUlk0ckNkYWZteVVxd1dCczRiYzhNS2x4QUozbTBfazBndmpWbXlGZXJMd3BzV05Gc09pVXFTcWJnTXM3SVpBR0phckE4LUh4Z1RsQV9lVWVDcXZxbnZlMXNyY3Y1TGZCcHg4UHhiOWRaN2hwaUtQYkRLODRRVUVnSEJETEVJdnhaTDBYZzF3djlQYXZzRGZ2dkVucS1ZRE4yRW9TNktfYUdac3ZaWlhGZng2TmppN0c2RHFPcGxJQzZhd1pwT0JBZDJJQTVycTEyWmxGVXdpaVFuNWw2eVUwOG9Vc2pYS2tNa1NWVnd2QUh0djduQnZ0dFJCM3VFSmRTNS1kRU1nZ3hGMjVzcm9OYXNrd1RnYTh3Q3g4YlZCYW9MS2dXcHlvN0VuVjVBaEtMeDREcEZoMDA3aTJ4N2pVUXZXM0pzcF9TbTN4RFMxS2F2RC1JUjVjWU9PRjhZYms3LV91M3UyM0g5Y0VZM3dIbmprN2RxbDE5cHY4akNRMFA5SmRJT3M5V0NOUFViMUJUcGp4akZWVWtEV3dXVDFZSjBCY29CX1VrOWx0WUtCUzE4RzdPRUF6UzhJWlpwVGVrckQ0QXBZY1N4Ri15ejVwLWI5Wm5QV3V1OGt0VWxpZDZMamZUcHptdUZJMnVZWnJMdDBsMVpxQUw4czlNRDJpZEdrcFJpa1NBT2Q5QmwwOElGSEtXRmNjNmpZekVlZEc0d3BZWkRhaXRpZzBURThRRVhmUk5jenhVQ1NuUEFHWHJaMGlpcVVGLWxLQlhXTktZd3NPb2ZnZlhrdzFyUGxkQnNudEw5alhhdHl1VUJOeXFzMzhxMmpWT2dJT25BSGtIOWJfWjJYbGdXVmEtT25QRm9XZFVlN0FkMHVpREpSWWp2SW5YcFBQN21WM3JCS1Q5U19tLW5oTnpRNDJ2bzNwYzVOM3d2M3ZVQVBUN0NlZVBWLUZDZW5nVkRKdDRLQ2I1SzJ6RFQ0WlBRVGgwSVNEWFpUVWUwWTBfVzlZOG5UZm5jSG5ROUc0RkJMbFFzd2REWndHOXNpV2JyVDU5anpYZWUxbkU4TGoyU1VkOFNEcklnTlVSWkt2NWN6czhVMGJGbnF3aGJLc2FxX0JrT2JxZ0kzZk1DVnJLb0UxbDRtUGthWk5xV19GQldheTdnU0VLTWtlSTk3WDBDWHdUaDNaQzVsVkhHZE40X0dDLWdsWThBNGNReDFONGhMODdNejFCY0lqbzhrRjh5bDVDdGdjU0ViQWY0Tm84NkRHb1d4SUY2RWdDdz09'
|
| 5 |
+
PROMPT_TEXT2 = 'Z0FBQUFBQm81WXdiX0xqQ1FZVTMzTEJFWEVGdHNyTVNXSjdBNGVpNnB4UWNSYjB1OUEtU3Fwb3pqOEhSc1VIbTYzbW1LTUVJdlp1WW5ydF9qSDh3bDZZekx4QnQtSHIxNFpiOFYwTHpMNjg1a0pmRURrOEVIV2tIYnBGcUhxUnZPZUU3VXlRbVFTNFJaYWdFaFkxNWswdU01ZEtadllHSldHekZPbW1uNkI5Zl9wUU1qNzlUZ1Nxd045SHUwZHp3c01zMFlHRmZ2eVRfQnprZ3ZGZENUUjZqaUZSeGtic0lISnlfclBVdVBKam40ODRvdFFobXlLQTI3TWhkRzNrNzdLWDVtZjcyZzQ5cnZmRGdhMk1ITHhibm44QU5tQVQtTE9NNUl6ZzJITEdNUFRFOFlqMDFqZDFkOEZMMmt4WER3NkV5alhpcERYQm1fSmc4QXBITVlsTGRDS1FwNnAwd3lSRXlkVGlOVkpCb1EybnNRSzJXcnpDMGt3X3Fuci1hVk9SUTc3UU5JbVNYWUdnVHhLMDhzY05seGY1X0JZMl9mNGowUVUwTHg3aTVjSnVIa2NpSWlKOW5FRjFkUnhKWmNIRmoxN1NVY256RFBKZWlQbzNnUHJGamNqNnl3Uk1tcGtaS2dnckhDb3RaYzd0N1Y5WE1oR0ZreWpwWDF5ZklhenlPc05ZekhyOFhUdzNnRTZERGdWMDBRTXVxRC1FcFI5OGM1b0tkMFBPbXdUN3BoSVdaT3g0UWtKdmVwSkJScHVrdTVqRDdnM25SUlhORkRlZktWTmxtNFAza3R5ajBwZVhPWEpCUE03YUdUWlZORHlIdWIwTUltcXdZeDM5bEJzZEFCVlp2Q25MNGZDQThxUWlucXlKY2pPY3lnSFVQYnZlMUE0QUpjZDJNbWY3T3kya0xFWDFhckowT3hrekk4TE1mdmpZeVNubjk1Wm1FdXdXdXF6T1NtU2VJZVRMSkpPc1RZa2ZydHR3MnVTT0tSeWtaUVhHa3J5Umd4VzF6M0xTWUVhejJicGNRd05HdC1CYklCclAya2wwQUdDM0JOQT09'
|
| 6 |
+
SYSPROMPT_STYLE = 'Z0FBQUFBQm81WXdiQ0xMdzRKT1EwaC1hVVRqVEd0ZlM3cUVsQ3JKN0dqREpNLTZCN1NmTTRLRWwyMDFXeFBvOUl3WlQyNklCWjFNalp0cVFvMFpDWkk5dnRMbXlOdjUtVW5raWQxTEVHc2Q0eHNVSkE0eDZrd2xJTDJCTG14blJTZVE1NWhDZHFpMXZfUFBrRzVpMHZsVFZkU2Q4RVZiZEtWUzI4eFQzUXQwS1NFWlpJbHIwVlNGVHdic0NpdDFQa3JEVHMzUzVEVV8yWGU1M2JWbEpUWGgzM0k1T3ZJSjRERDRmUGpWbnoyUDNTTmZ6YW95bDNJYm9naDVZZzF4Z3JkOEJyTldTYjdXZUQ3Y2xhR2NBYUdKZnp2dEdFLUJ6T0NhOUhWbTlyc3lTNmN2azJpTXBPZXpXbVVaVjVDRExnOXY3dklDN3daUVFiM3BHQWRHaS1UcUFVdjZVYzlTc2dQZHlUSW1vcXdON2tzTHRnX292cFJSbHlQOHpPMGJtOGJWLVl2LXRlQ3FVVTh2VDQ4WVB5OVBzMjJiNENtTlFSek5sTGZyS2F0eVEzcEhsa1RVeE5NZz0='
|
| 7 |
+
SYSPROMPT_TEXT = 'Z0FBQUFBQm81WXdiWVFEcG9nOV9MSnI2T0MyOEhGYTFmd2FYLTd2enJmdFhxUzVWM1BadE40S1poaTNSVlg2NXNjOTItLUhSZmVReVpmeV92SnI4RzljdzBrLW1Nc0dmeXNqOVhXa0pjZ1U0SlVIUUJsUXdQNXpKd29WZmlKaWVUSDJ1N2xuT3NpQ1Y1QU03SU1ISFBVQlRVZDZWcC1saGlvMzBMU3BDME94QWg4cVRUZzg3Um84YXNiTW0zNTBjOVB6N0Jvd1BSbWdpZ3lhelZISTNZdy1kUlItTVJGdHJkTUoxd2Q1U2R2N3ZjUFBPRGxHVUY4cktKREJ5R2xfVWJzLVU4WHVwdkJOcnZaTzBhTGJaaDBjRGh2SmpMZ0xlcF9PWi1kTWNYWE93c3dXeEhtRmc5aTdiMy1qaUVMdGtaZUt0SnZIWlk0SmtaQWJmQ0Fidm9GRExFcU5kWV9OcXpqbXliaEg3WlZaWnU0MGVtSktvTC1nVTRBRWE4OFRPRmNLdzlvbE1NYTBETGd1MWxvYTZoSE9YUExzTDhRNU8zOW51TlpQMXJCS3F6UnVNdDlDX2RUcmtWbVExclJqVzRqajE1Y3Q2UDBibUhSOEJNcjRjMS1BYjJXU1hFbFIyb1RURllReVpDVmVnVVlCeVlSUXREZ2ZxX1l3Njh3Q2RGUFUxRzI3b3RVOVI='
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
gradio_client
|
| 3 |
+
openai
|
| 4 |
+
python-dotenv
|
| 5 |
+
requests
|
| 6 |
+
cryptography
|
splash.webp
ADDED
|