Text3D-UTPL / core /options.py
cavargas10's picture
Upload 101 files
c1c0440 verified
raw
history blame
7.2 kB
import tyro
from dataclasses import dataclass
from typing import Tuple, Literal, Dict, Optional
@dataclass
class Options:
seed: Optional[int] = None
is_crop: bool = True
is_fix_views: bool = False
specific_demo: Optional[str] = None
txt_or_image: Optional[bool] = False #True=text prompts
infer_render_size: int = 256
mvdream_or_zero123: Optional[bool] = True # True for mvdream False for zero123plus
#true for rar
rar_data: bool = True
### model
# Unet image input size
input_size: int = 512
# Unet definition
down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024)
down_attention: Tuple[bool, ...] = (False, False, False, True, True, True)
mid_attention: bool = True
up_channels: Tuple[int, ...] = (1024, 1024, 512, 256)
up_attention: Tuple[bool, ...] = (True, True, True, False)
# Unet output size, dependent on the input_size and U-Net structure!
splat_size: int = 64
# svd render size
output_size: Optional[int] = 128
#for tensor
density_n_comp: int = 8
app_n_comp: int = 32
app_dim: int = 27
density_dim: int = 8
shadingMode: Literal['MLP_Fea']='MLP_Fea' #'MLP_Fea'
view_pe: int = 2
fea_pe: int = 2
pos_pe: int = 6
# points number sampled per ray
n_sample: int = 64
# model type TRF for vsd+nerf TRF_GS for vsd+gs TRI_GS for tri+gs
volume_mode: Literal['TRF_Mesh','TRF_NeRF'] = 'TRF_NeRF'
# for LRM_Net
camera_embed_dim: int=1024
transformer_dim: int=1024
transformer_layers: int=16
transformer_heads: int=16
triplane_low_res: int=32
triplane_high_res: int=64
triplane_dim: int=32
encoder_type: str ='dinov2'
encoder_model_name: str = 'dinov2_vitb14_reg'#'dinov2_vits14_reg' #'dinov2_vitb14_reg'
encoder_feat_dim: int = 768 #768
encoder_freeze: bool = False
#training
over_fit: Optional[bool] = False
is_grid_sample: bool = False
### dataset
# data mode (only support s3 now)
data_mode: Literal['s3','s4','s5'] = 's4'
data_path: str = 'train_data'
data_debug_list: str = 'dataset_debug/gobj_merged_debug.json'
data_list_path: str = 'dataset_debug/gobj_merged_debug_selected.json' #dataset_debug/gobj_merged_debug.json'
# fovy of the dataset
fovy: float = 39.6 #49.1
# camera near plane
znear: float = 0.5
# camera far plane
zfar: float = 2.5
# number of all views (input + output)
num_views: int = 12
# number of views
num_input_views: int = 4
# camera radius
cam_radius: float = 1.5 # to better use [-1, 1]^3 space
# num workers
num_workers: int = 8 #8
# 是否考虑单个视角的view
training_view_plane: bool = False
is_certainty: bool = False
### training
# workspace
workspace: str = './workspace_test'
# resume
resume: Optional[str] = None
ckpt_nerf: Optional[str] = None
# batch size (per-GPU)
batch_size: int = 8
# gradient accumulation
gradient_accumulation_steps: Optional[int] = 1
# training epochs
num_epochs: int = 50
# lpips loss weight
lambda_lpips: float = 2.0
# gradient clip
gradient_clip: float = 1.0
# mixed precision
mixed_precision: str = 'bf16'
# learning rate
lr: Optional[float] = 4e-4
lr_scheduler: str = 'OneCycleLR'
warmup_real_iters: int = 3000
# augmentation prob for grid distortion
prob_grid_distortion: float = 0.5
# augmentation prob for camera jitter
prob_cam_jitter: float = 0.5
### testing
# test image path
test_path: Optional[str] = None
### misc
# nvdiffrast backend setting
force_cuda_rast: bool = False
# render fancy video with gaussian scaling effect
fancy_video: bool = False
# all the default settings
config_defaults: Dict[str, Options] = {}
config_doc: Dict[str, str] = {}
config_doc['lrm'] = 'the default settings for LGM'
config_defaults['lrm'] = Options()
config_doc['small'] = 'small model with lower resolution Gaussians'
config_defaults['small'] = Options(
input_size=256,
splat_size=64,
output_size=256,
batch_size=8,
gradient_accumulation_steps=1,
mixed_precision='bf16',
)
config_doc['big'] = 'big model with higher resolution Gaussians'
config_defaults['big'] = Options(
input_size=256,
up_channels=(1024, 1024, 512, 256, 128), # one more decoder
up_attention=(True, True, True, False, False),
splat_size=128,
output_size=512, # render & supervise Gaussians at a higher resolution.
batch_size=8,
num_views=8,
gradient_accumulation_steps=1,
mixed_precision='bf16',
)
config_doc['tiny_trf_trans_mesh'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_mesh'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_Mesh',
# ckpt_nerf='workspace_debug/0428_02/last.ckpt',
splat_size=64,
output_size=512,
data_mode='s6',
batch_size=1, #8
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='no',
)
config_doc['tiny_trf_trans_nerf'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_nerf'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_NeRF',
splat_size=64,
output_size=62, #crop patch
data_mode='s5',
batch_size=4, #8
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
config_doc['tiny_trf_trans_nerf_123plus'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_nerf_123plus'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_NeRF',
splat_size=64,
output_size=116, #crop patch
data_mode='s5',
mvdream_or_zero123=False,
batch_size=1, #8
num_views=10,
num_input_views=6,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
config_doc['tiny_trf_trans_nerf_nocrop'] = 'tiny model for ablation'
config_defaults['tiny_trf_trans_nerf_nocrop'] = Options(
input_size=512,
down_channels=(32, 64, 128, 256, 512),
down_attention=(False, False, False, False, True),
up_channels=(512, 256, 128),
up_attention=(True, False, False, False),
volume_mode='TRF_NeRF',
splat_size=64,
output_size=62, #crop patch
data_mode='s5',
batch_size=4, #8
is_crop=False,
num_views=8,
gradient_accumulation_steps=1, #2
mixed_precision='bf16',
)
AllConfigs = tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc)