Spaces:
Runtime error
Runtime error
| # Some parts of this file are adapted from Hugging Face Diffusers library. | |
| from typing import Any, Dict, Optional, Union, Tuple | |
| from dataclasses import dataclass | |
| import re | |
| import torch | |
| from torch import nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import PeftAdapterMixin | |
| from diffusers.models.attention_processor import ( | |
| Attention, | |
| AttentionProcessor, | |
| AttnProcessor, | |
| ) | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.embeddings import ( | |
| GaussianFourierProjection, | |
| TimestepEmbedding, | |
| Timesteps, | |
| ) | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_version, | |
| logging, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.models.normalization import ( | |
| AdaLayerNormSingle, | |
| AdaLayerNormContinuous, | |
| FP32LayerNorm, | |
| LayerNorm, | |
| ) | |
| from ..attention_processor import FusedFluxAttnProcessor2_0, FluxAttnProcessor2_0 | |
| from ..attention import FluxTransformerBlock, FluxSingleTransformerBlock | |
| import step1x3d_geometry | |
| from step1x3d_geometry.utils.base import BaseModule | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class Transformer1DModelOutput: | |
| sample: torch.FloatTensor | |
| class FluxTransformer1DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| r""" | |
| The Transformer model introduced in Flux. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-la | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): | |
| The number of heads to use for multi-head attention. | |
| width (`int`, *optional*, defaults to 2048): | |
| Maximum sequence length in latent space (equivalent to max_seq_length in Transformers). | |
| Determines the first dimension size of positional embedding matrices[1](@ref). | |
| in_channels (`int`, *optional*, defaults to 64): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| num_layers (`int`, *optional*, defaults to 1): | |
| The number of layers of Transformer blocks to use. | |
| cross_attention_dim (`int`, *optional*): | |
| Dimensionality of conditional embeddings for cross-attention mechanisms | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] | |
| _skip_layerwise_casting_patterns = ["pos_embed", "norm"] | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| width: int = 2048, | |
| in_channels: int = 4, | |
| num_layers: int = 19, | |
| num_single_layers: int = 38, | |
| cross_attention_dim: int = 768, | |
| ): | |
| super().__init__() | |
| # Set some common variables used across the board. | |
| self.out_channels = in_channels | |
| self.num_heads = num_attention_heads | |
| self.inner_dim = width | |
| # self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| # self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) | |
| time_embed_dim, timestep_input_dim = self._set_time_proj( | |
| "positional", | |
| inner_dim=self.inner_dim, | |
| flip_sin_to_cos=False, | |
| freq_shift=0, | |
| time_embedding_dim=None, | |
| ) | |
| self.time_proj = TimestepEmbedding( | |
| timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim | |
| ) | |
| self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) | |
| self.proj_cross_attention = nn.Linear( | |
| self.config.cross_attention_dim, self.inner_dim, bias=True | |
| ) | |
| # 2. Initialize the transformer blocks. | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| FluxTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=width // num_attention_heads, | |
| ) | |
| for _ in range(self.config.num_layers) | |
| ] | |
| ) | |
| self.single_transformer_blocks = nn.ModuleList( | |
| [ | |
| FluxSingleTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=width // num_attention_heads, | |
| ) | |
| for _ in range(self.config.num_single_layers) | |
| ] | |
| ) | |
| # 3. Output blocks. | |
| self.norm_out = AdaLayerNormContinuous( | |
| self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 | |
| ) | |
| self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True) | |
| self.gradient_checkpointing = False | |
| def _set_time_proj( | |
| self, | |
| time_embedding_type: str, | |
| inner_dim: int, | |
| flip_sin_to_cos: bool, | |
| freq_shift: float, | |
| time_embedding_dim: int, | |
| ) -> Tuple[int, int]: | |
| if time_embedding_type == "fourier": | |
| time_embed_dim = time_embedding_dim or inner_dim * 2 | |
| if time_embed_dim % 2 != 0: | |
| raise ValueError( | |
| f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}." | |
| ) | |
| self.time_embed = GaussianFourierProjection( | |
| time_embed_dim // 2, | |
| set_W_to_weight=False, | |
| log=False, | |
| flip_sin_to_cos=flip_sin_to_cos, | |
| ) | |
| timestep_input_dim = time_embed_dim | |
| elif time_embedding_type == "positional": | |
| time_embed_dim = time_embedding_dim or inner_dim * 4 | |
| self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = inner_dim | |
| else: | |
| raise ValueError( | |
| f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
| ) | |
| return time_embed_dim, timestep_input_dim | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 馃И experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError( | |
| "`fuse_qkv_projections()` is not supported for models having added KV projections." | |
| ) | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedFluxAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 馃И experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] | |
| ): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| self.set_attn_processor(FluxAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking( | |
| self, chunk_size: Optional[int] = None, dim: int = 0 | |
| ) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward( | |
| module: torch.nn.Module, chunk_size: int, dim: int | |
| ): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking | |
| def disable_forward_chunking(self): | |
| def fn_recursive_feed_forward( | |
| module: torch.nn.Module, chunk_size: int, dim: int | |
| ): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, None, 0) | |
| def forward( | |
| self, | |
| hidden_states: Optional[torch.Tensor], | |
| timestep: Union[int, float, torch.LongTensor], | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`HunyuanDiT2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(batch size, dim, latents_size)`): | |
| The input tensor. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. | |
| encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. | |
| encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. | |
| return_dict: bool | |
| Whether to return a dictionary. | |
| """ | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if ( | |
| attention_kwargs is not None | |
| and attention_kwargs.get("scale", None) is not None | |
| ): | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| _, N, _ = hidden_states.shape | |
| # import pdb; pdb.set_trace() | |
| # timesteps_proj = self.time_proj(timestep) # N x 256 | |
| # temb = self.time_embed(timesteps_proj).to(hidden_states.dtype) | |
| temb = self.time_embed(timestep).to(hidden_states.dtype) # N x 1280 | |
| temb = self.time_proj(temb) # N x 1280 | |
| hidden_states = self.proj_in(hidden_states) | |
| encoder_hidden_states = self.proj_cross_attention(encoder_hidden_states) | |
| for layer, block in enumerate(self.transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| encoder_hidden_states, hidden_states = ( | |
| torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| None, # image_rotary_emb | |
| attention_kwargs, | |
| ) | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=temb, | |
| image_rotary_emb=None, | |
| joint_attention_kwargs=attention_kwargs, | |
| ) # (N, L, D) | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| for layer, block in enumerate(self.single_transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| temb, | |
| None, # image_rotary_emb | |
| attention_kwargs, | |
| ) | |
| else: | |
| hidden_states = block( | |
| hidden_states, | |
| temb=temb, | |
| image_rotary_emb=None, | |
| joint_attention_kwargs=attention_kwargs, | |
| ) # (N, L, D) | |
| hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
| # final layer | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (hidden_states,) | |
| return Transformer1DModelOutput(sample=hidden_states) | |
| class FluxDenoiser(BaseModule): | |
| class Config(BaseModule.Config): | |
| pretrained_model_name_or_path: Optional[str] = None | |
| input_channels: int = 32 | |
| width: int = 768 | |
| layers: int = 12 | |
| num_single_layers: int = 12 | |
| num_heads: int = 16 | |
| condition_dim: int = 1024 | |
| multi_condition_type: str = "in_context" | |
| use_visual_condition: bool = False | |
| visual_condition_dim: int = 1024 | |
| n_views: int = 1 | |
| use_caption_condition: bool = False | |
| caption_condition_dim: int = 1024 | |
| use_label_condition: bool = False | |
| label_condition_dim: int = 1024 | |
| identity_init: bool = False | |
| cfg: Config | |
| def configure(self) -> None: | |
| assert ( | |
| self.cfg.multi_condition_type == "in_context" | |
| ), "Flux Denoiser only support in_context learning of multiple conditions" | |
| self.dit_model = FluxTransformer1DModel( | |
| num_attention_heads=self.cfg.num_heads, | |
| width=self.cfg.width, | |
| in_channels=self.cfg.input_channels, | |
| num_layers=self.cfg.layers, | |
| num_single_layers=self.cfg.num_single_layers, | |
| cross_attention_dim=self.cfg.condition_dim, | |
| ) | |
| if ( | |
| self.cfg.use_visual_condition | |
| and self.cfg.visual_condition_dim != self.cfg.condition_dim | |
| ): | |
| self.proj_visual_condtion = nn.Sequential( | |
| nn.RMSNorm(self.cfg.visual_condition_dim), | |
| nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim), | |
| ) | |
| if ( | |
| self.cfg.use_caption_condition | |
| and self.cfg.caption_condition_dim != self.cfg.condition_dim | |
| ): | |
| self.proj_caption_condtion = nn.Sequential( | |
| nn.RMSNorm(self.cfg.caption_condition_dim), | |
| nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim), | |
| ) | |
| if ( | |
| self.cfg.use_label_condition | |
| and self.cfg.label_condition_dim != self.cfg.condition_dim | |
| ): | |
| self.proj_label_condtion = nn.Sequential( | |
| nn.RMSNorm(self.cfg.label_condition_dim), | |
| nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim), | |
| ) | |
| if self.cfg.identity_init: | |
| self.identity_initialize() | |
| if self.cfg.pretrained_model_name_or_path: | |
| print( | |
| f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}" | |
| ) | |
| ckpt = torch.load( | |
| self.cfg.pretrained_model_name_or_path, | |
| map_location="cpu", | |
| weights_only=True, | |
| ) | |
| if "state_dict" in ckpt.keys(): | |
| ckpt = ckpt["state_dict"] | |
| self.load_state_dict(ckpt, strict=True) | |
| def identity_initialize(self): | |
| for block in self.dit_model.blocks: | |
| nn.init.constant_(block.attn.c_proj.weight, 0) | |
| nn.init.constant_(block.attn.c_proj.bias, 0) | |
| nn.init.constant_(block.cross_attn.c_proj.weight, 0) | |
| nn.init.constant_(block.cross_attn.c_proj.bias, 0) | |
| nn.init.constant_(block.mlp.c_proj.weight, 0) | |
| nn.init.constant_(block.mlp.c_proj.bias, 0) | |
| def forward( | |
| self, | |
| model_input: torch.FloatTensor, | |
| timestep: torch.LongTensor, | |
| visual_condition: Optional[torch.FloatTensor] = None, | |
| caption_condition: Optional[torch.FloatTensor] = None, | |
| label_condition: Optional[torch.FloatTensor] = None, | |
| attention_kwargs: Dict[str, torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| r""" | |
| Args: | |
| model_input (torch.FloatTensor): [bs, n_data, c] | |
| timestep (torch.LongTensor): [bs,] | |
| visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c] | |
| caption_condition (torch.FloatTensor): [bs, text_context_tokens, c] | |
| label_condition (torch.FloatTensor): [bs, c] | |
| Returns: | |
| sample (torch.FloatTensor): [bs, n_data, c] | |
| """ | |
| B, n_data, _ = model_input.shape | |
| # 0. conditions projector | |
| condition = [] | |
| if self.cfg.use_visual_condition: | |
| assert visual_condition.shape[-1] == self.cfg.visual_condition_dim | |
| if self.cfg.visual_condition_dim != self.cfg.condition_dim: | |
| visual_condition = self.proj_visual_condtion(visual_condition) | |
| condition.append(visual_condition) | |
| if self.cfg.use_caption_condition: | |
| assert caption_condition.shape[-1] == self.cfg.caption_condition_dim | |
| if self.cfg.caption_condition_dim != self.cfg.condition_dim: | |
| caption_condition = self.proj_caption_condtion(caption_condition) | |
| condition.append(caption_condition) | |
| if self.cfg.use_label_condition: | |
| assert label_condition.shape[-1] == self.cfg.label_condition_dim | |
| if self.cfg.label_condition_dim != self.cfg.condition_dim: | |
| label_condition = self.proj_label_condtion(label_condition) | |
| condition.append(label_condition) | |
| # 1. denoise | |
| output = self.dit_model( | |
| model_input, | |
| timestep, | |
| torch.cat(condition, dim=1), | |
| attention_kwargs, | |
| return_dict=return_dict, | |
| ) | |
| return output | |