foodvision_mini / model.py
catperson1208's picture
firt_commit
3fef8b8
raw
history blame contribute delete
717 Bytes
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes:int=3,#default output classes = 3
seed:int=42):
weights=torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms=weights.transforms()
model=torchvision.models.efficientnet_b2(weights=weights)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
# 5. change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier=nn.Sequential(
nn.Dropout(p=0.3,inplace=True),
nn.Linear(in_features=1408,out_features=num_classes)
)
return model,transforms