CataLlama-Chat / app.py
laurentiubp's picture
Update app.py
d90ef51 verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_INPUT_TOKEN_LENGTH = 8192
DESCRIPTION = """\
# CataLlama-v0.2-Instruct-DPO
This Space demonstrates model [CataLlama-v0.2-Instruct-DPO](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-DPO).
CataLlama is a fine-tune of Llama-3-8B to enhance it's proficiency on the Catalan Language.
The model is capable of performing the following **tasks in Catalan**:
- Translation from English to Catalan and Catalan to English
- Summarization - both short form and long form
- Information extraction (suitable for RAG)
- Named Entity Recognition (NER)
- Open question answering
- Sentiment analysis
"""
LICENSE = """\
As a derivate work of [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta, this demo is governed by the original [llama-3 license](https://llama.meta.com/llama3/license)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "catallama/CataLlama-v0.2-Instruct-SFT"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU(duration=120)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
value="Ets un chatbot amigable. Responeu preguntes i ajudeu els usuaris.",
label="System message",
lines=6
),
gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=256,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.90,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
examples=[
["A quina velocitat poden volar els cocodrils?"],
["Explica pas a pas com resoldre l'equació següent: 2x + 10 = 0"],
["Pot Donald Trump sopar amb Juli Cèsar?"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()