Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_INPUT_TOKEN_LENGTH = 8192 | |
DESCRIPTION = """\ | |
# CataLlama-v0.2-Instruct-DPO | |
This Space demonstrates model [CataLlama-v0.2-Instruct-DPO](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-DPO). | |
CataLlama is a fine-tune of Llama-3-8B to enhance it's proficiency on the Catalan Language. | |
The model is capable of performing the following **tasks in Catalan**: | |
- Translation from English to Catalan and Catalan to English | |
- Summarization - both short form and long form | |
- Information extraction (suitable for RAG) | |
- Named Entity Recognition (NER) | |
- Open question answering | |
- Sentiment analysis | |
""" | |
LICENSE = """\ | |
As a derivate work of [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) by Meta, this demo is governed by the original [llama-3 license](https://llama.meta.com/llama3/license) | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "catallama/CataLlama-v0.2-Instruct-SFT" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox( | |
value="Ets un chatbot amigable. Responeu preguntes i ajudeu els usuaris.", | |
label="System message", | |
lines=6 | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=1024, | |
step=256, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.3, | |
step=0.05, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.90, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
examples=[ | |
["A quina velocitat poden volar els cocodrils?"], | |
["Explica pas a pas com resoldre l'equació següent: 2x + 10 = 0"], | |
["Pot Donald Trump sopar amb Juli Cèsar?"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |