Spaces:
Runtime error
Runtime error
import os | |
import glob | |
from typing import List | |
from dotenv import load_dotenv | |
from langchain.document_loaders import ( | |
CSVLoader, | |
EverNoteLoader, | |
PDFMinerLoader, | |
TextLoader, | |
UnstructuredEmailLoader, | |
UnstructuredEPubLoader, | |
UnstructuredHTMLLoader, | |
UnstructuredMarkdownLoader, | |
UnstructuredODTLoader, | |
UnstructuredPowerPointLoader, | |
UnstructuredWordDocumentLoader, | |
) | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.docstore.document import Document | |
from constants import CHROMA_SETTINGS | |
load_dotenv() | |
# Map file extensions to document loaders and their arguments | |
LOADER_MAPPING = { | |
".csv": (CSVLoader, {}), | |
# ".docx": (Docx2txtLoader, {}), | |
".docx": (UnstructuredWordDocumentLoader, {}), | |
".enex": (EverNoteLoader, {}), | |
".eml": (UnstructuredEmailLoader, {}), | |
".epub": (UnstructuredEPubLoader, {}), | |
".html": (UnstructuredHTMLLoader, {}), | |
".md": (UnstructuredMarkdownLoader, {}), | |
".odt": (UnstructuredODTLoader, {}), | |
".pdf": (PDFMinerLoader, {}), | |
".pptx": (UnstructuredPowerPointLoader, {}), | |
".txt": (TextLoader, {"encoding": "utf8"}), | |
# Add more mappings for other file extensions and loaders as needed | |
} | |
load_dotenv() | |
def load_single_document(file_path: str) -> Document: | |
ext = "." + file_path.rsplit(".", 1)[-1] | |
if ext in LOADER_MAPPING: | |
loader_class, loader_args = LOADER_MAPPING[ext] | |
loader = loader_class(file_path, **loader_args) | |
return loader.load()[0] | |
raise ValueError(f"Unsupported file extension '{ext}'") | |
def load_documents(source_dir: str) -> List[Document]: | |
# Loads all documents from source documents directory | |
all_files = [] | |
for ext in LOADER_MAPPING: | |
all_files.extend( | |
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) | |
) | |
return [load_single_document(file_path) for file_path in all_files] | |
def main(): | |
# Load environment variables | |
persist_directory = os.environ.get('PERSIST_DIRECTORY') | |
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') | |
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME') | |
# Load documents and split in chunks | |
print(f"Loading documents from {source_directory}") | |
chunk_size = 500 | |
chunk_overlap = 50 | |
documents = load_documents(source_directory) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents) | |
print(f"Loaded {len(documents)} documents from {source_directory}") | |
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)") | |
# Create embeddings | |
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) | |
# Create and store locally vectorstore | |
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) | |
db.persist() | |
db = None | |
if __name__ == "__main__": | |
main() | |