PrivateGPT / ingest.py
Joel Casimir
privategpt
ee678e1
import os
import glob
from typing import List
from dotenv import load_dotenv
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PDFMinerLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
from constants import CHROMA_SETTINGS
load_dotenv()
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (UnstructuredEmailLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
load_dotenv()
def load_single_document(file_path: str) -> Document:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()[0]
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str) -> List[Document]:
# Loads all documents from source documents directory
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
return [load_single_document(file_path) for file_path in all_files]
def main():
# Load environment variables
persist_directory = os.environ.get('PERSIST_DIRECTORY')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
# Load documents and split in chunks
print(f"Loading documents from {source_directory}")
chunk_size = 500
chunk_overlap = 50
documents = load_documents(source_directory)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Loaded {len(documents)} documents from {source_directory}")
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)")
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
# Create and store locally vectorstore
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
db.persist()
db = None
if __name__ == "__main__":
main()