casheu commited on
Commit
4f07a40
1 Parent(s): 6bb4bef
Files changed (4) hide show
  1. .vscode/launch.json +16 -0
  2. USA_Housing.csv +0 -0
  3. eda.py +10 -18
  4. image.jpeg +0 -0
.vscode/launch.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ // Use IntelliSense to learn about possible attributes.
3
+ // Hover to view descriptions of existing attributes.
4
+ // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
5
+ "version": "0.2.0",
6
+ "configurations": [
7
+ {
8
+ "name": "Python: Current File",
9
+ "type": "python",
10
+ "request": "launch",
11
+ "program": "${file}",
12
+ "console": "integratedTerminal",
13
+ "justMyCode": true
14
+ }
15
+ ]
16
+ }
USA_Housing.csv ADDED
The diff for this file is too large to render. See raw diff
 
eda.py CHANGED
@@ -1,41 +1,33 @@
1
  import streamlit as st
 
2
  import pandas as pd
3
  import seaborn as sns
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
 
 
 
 
 
7
  st.set_page_config(
8
- page_title='FIFA 2022 - EDA',
9
  layout='wide',
10
  initial_sidebar_state='expanded'
11
  )
12
 
13
  def run():
14
  # Title
15
- st.title('House Price Prediction by Area Characteristics')
16
-
17
- # Membuat Sub Header
18
- st.subheader('EDA untuk Analisa Dataset FIFA 2022')
19
-
20
- # Membuat Deskripsi
21
- st.write('Page ini dibuat oleh *Danu Purnomo*')
22
 
23
  # Menambahkan Gambar
24
- #image = Image.open('soccer.jpg')
25
- #st.image(image, caption='FIFA 2022')
26
 
27
  # Membuat Garis Lurus
28
  st.markdown('---')
29
 
30
- # Magic Syntax
31
- '''
32
- Pada page kali ini, penulis akan melakukan eskplorasi sederhana.
33
- Dataset yang digunakan adalah dataset FIFA 2022.
34
- Dataset ini berasal dari web sofifa.com.
35
- '''
36
-
37
  # Show DataFrame
38
- data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
39
  st.dataframe(data)
40
 
41
  # Membuat BarPlot
 
1
  import streamlit as st
2
+ from PIL import Image
3
  import pandas as pd
4
  import seaborn as sns
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
 
8
+
9
+
10
+ import plotly.express as px
11
+
12
  st.set_page_config(
13
+ page_title='US House Price - EDA',
14
  layout='wide',
15
  initial_sidebar_state='expanded'
16
  )
17
 
18
  def run():
19
  # Title
20
+ st.title('House Price Prediction EDA')
 
 
 
 
 
 
21
 
22
  # Menambahkan Gambar
23
+ image = Image.open('image.jpeg')
24
+ st.image(image, caption='US Suburbs')
25
 
26
  # Membuat Garis Lurus
27
  st.markdown('---')
28
 
 
 
 
 
 
 
 
29
  # Show DataFrame
30
+ data = pd.read_csv('USA_Housing.csv')
31
  st.dataframe(data)
32
 
33
  # Membuat BarPlot
image.jpeg ADDED