Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import plotly.express as px | |
from PIL import Image | |
import numpy as np | |
import joblib | |
import json | |
# Load All Files | |
with open('model_lin_reg.pkl', 'rb') as file_1: | |
model_lin_reg = joblib.load(file_1) | |
with open('pipeline.pkl', 'rb') as file_2: | |
preprocessor = joblib.load(file_2) | |
def run(): | |
# Membuat Form | |
with st.form(key='form_parameters'): | |
income = st.number_input('Average Income', min_value=0, max_value=60, value=25, step=1) | |
age = st.number_input('House Age', min_value=0, max_value=60, value=25, step=1) | |
rooms = st.number_input('Number of Rooms', min_value=50, max_value=150, value=70) | |
bedrooms = st.number_input('Number of Bedrooms', min_value=50, max_value=150, value=70) | |
population = st.number_input('Area Population', min_value=50, max_value=150, value=70) | |
# price = st.slider('Price', 0, 100000000, 0) | |
#price = st.number_input('Price', min_value=0, max_value=1000000000, value=0) | |
st.markdown('---') | |
#attacking_work_rate = st.selectbox('AttackingWorkrate', ('Low', 'Medium', 'High'), index=1) | |
#defensive_work_rate = st.selectbox('DefensiveWorkRate', ('Low', 'Medium', 'High'), index=1) | |
st.markdown('---') | |
#pace = st.number_input('Pace', min_value=0, max_value=100, value=50) | |
#shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50) | |
#passing = st.number_input('Passing', min_value=0, max_value=100, value=50) | |
#dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50) | |
#defending = st.number_input('Defending', min_value=0, max_value=100, value=50) | |
#physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50) | |
st.markdown('---') | |
submitted = st.form_submit_button('Predict') | |
data_inf = { | |
'Income': income, | |
'Age': age, | |
'Rooms': rooms, | |
'Bedrooms': bedrooms, | |
'Population': population | |
} | |
data_inf = pd.DataFrame([data_inf]) | |
st.dataframe(data_inf) | |
if submitted: | |
# Feature Preprocessing | |
X_inf = preprocessor.transform(data_inf) | |
# Predict using Linear regression | |
y_pred_inf = model_lin_reg.predict(X_inf) | |
st.write('# House Price : ', str(int(y_pred_inf))) | |
if __name__ == '__main__': | |
run() |