Spaces:
Runtime error
Runtime error
| try: | |
| import detectron2 | |
| except: | |
| import os | |
| os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
| # from matplotlib.pyplot import axis | |
| os.system('pip install altair') | |
| import altair | |
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from detectron2 import model_zoo | |
| from detectron2.engine import DefaultPredictor | |
| from detectron2.config import get_cfg | |
| from detectron2.utils.visualizer import Visualizer | |
| from detectron2.data import MetadataCatalog | |
| # Creaci贸n del modelo | |
| cfg = get_cfg() | |
| # Es el modelo utilizado por Ekimetrics | |
| cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) | |
| cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
| cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") | |
| # En caso de que no puedas usar GPU y debas usar la CPU, tienes que especificarlo de esta manera | |
| if not torch.cuda.is_available(): | |
| cfg.MODEL.DEVICE='cpu' | |
| model = DefaultPredictor(cfg) | |
| title = '<center><img src = "https://images.squarespace-cdn.com/content/v1/5573469fe4b0061829d437e6/1591631182400-7DJR03RV6ZOCN0TBPRD7/white-deloitte-logo1.jpg" width="130" height="20"></center><p>Detectron2 Image Detection</p>' | |
| description = 'Implementaci贸n de Detectron2 en la detecci贸n de im谩genes. Sube una imagen, dale a submit y espera unos segundos a ver el output de la imagen con los objetos detectados' | |
| article = '<p>Conoce m谩s en: <a href="https://www2.deloitte.com/es/es/pages/strategy-operations/solutions/analytics-and-cognitive.html">Visita Deloitte AI&Data</a></p><p>Desarrollado por Carlos y Luc铆a</p>' | |
| def inference(image): | |
| print(image.height) | |
| height = image.height | |
| img = np.array(image.resize((640, 500))) | |
| outputs = model(img) | |
| v = Visualizer(img, MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
| out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
| return out.get_image() | |
| css1 = "body {background-image: url(r'https://www2.deloitte.com/content/dam/Deloitte/in/Images/promo_images/in-deloitte-logo-1x1-noexp.png');}" | |
| gr.Interface( | |
| inference, | |
| [gr.inputs.Image(type="pil", label="Input")], | |
| gr.outputs.Image(type="numpy", label="Output"), | |
| title=title, | |
| description=description, | |
| article=article, | |
| css = css1, | |
| examples=[]).launch() |