foodvisionvit / model.py
carlosabadia's picture
init
bab16e4
raw
history blame
1.15 kB
import torch
import torchvision
from torch import nn
def create_vit16_model(num_classes:int=101,
seed:int=42):
"""Creates an EfficientNetB2 feature extractor model and transforms.
Args:
num_classes (int, optional): number of classes in the classifier head.
Defaults to 3.
seed (int, optional): random seed value. Defaults to 42.
Returns:
model (torch.nn.Module): vit feature extractor model.
transforms (torchvision.transforms): vit image transforms.
"""
# Create vit pretrained weights, transforms and model
weights = torchvision.models.ViT_B_16_Weights.DEFAULT;
transforms = weights.transforms()
model = torchvision.models.vit_b_16(weights=weights)
# Freeze all layers in base model
for param in model.parameters():
param.requires_grad = False
# Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes),
)
return model, transforms