dogs-cats / app.py
carlos-pino's picture
Upload app.py
77f583e
raw
history blame
1.17 kB
import gradio as gr
import tensorflow as tf
import cv2
import numpy as np
# from transformers import pipeline
from keras_preprocessing.image import img_to_array
# pipeline = pipeline(task="dogs-cat-classification", model="carlos-pino/dogs-cats")
# Get model
model = './saves/dogs-cats.h5'
CNN_MODEL = tf.keras.models.load_model(model)
weight_model = CNN_MODEL.get_weights()
CNN_MODEL.set_weights(weight_model)
IMAGE_SIZE = 100
def predict(frame):
# Parse to gray
img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=cv2.INTER_CUBIC)
# Img normalized
img = np.array(img).astype(float) / 255
# Parse to 2D array
image = img_to_array(img)
image = np.expand_dims(image, axis=0)
# Predict
prediction = CNN_MODEL.predict(image)
prediction = prediction[0][0]
# Classification
if prediction <= 0.5:
return {"Cat": prediction}
return {"Dog": prediction}
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload cat or dog candidate", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=2),
title="Dog or Cat?",
).launch()