Spaces:
Runtime error
Runtime error
carlfeynman
commited on
Commit
β’
9c06ef3
1
Parent(s):
ea785e1
batchnorm2d replaced with layernorm2d
Browse files- classifier.pth +0 -0
- mnist_classifier.ipynb +71 -54
classifier.pth
CHANGED
Binary files a/classifier.pth and b/classifier.pth differ
|
|
mnist_classifier.ipynb
CHANGED
@@ -46,7 +46,7 @@
|
|
46 |
"output_type": "stream",
|
47 |
"text": [
|
48 |
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
|
49 |
-
"100%|ββββββββββ| 2/2 [00:00<00:00,
|
50 |
]
|
51 |
}
|
52 |
],
|
@@ -139,7 +139,7 @@
|
|
139 |
},
|
140 |
{
|
141 |
"cell_type": "code",
|
142 |
-
"execution_count":
|
143 |
"metadata": {},
|
144 |
"outputs": [],
|
145 |
"source": [
|
@@ -154,7 +154,7 @@
|
|
154 |
},
|
155 |
{
|
156 |
"cell_type": "code",
|
157 |
-
"execution_count":
|
158 |
"metadata": {},
|
159 |
"outputs": [],
|
160 |
"source": [
|
@@ -168,7 +168,7 @@
|
|
168 |
"\n",
|
169 |
"def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
|
170 |
" return nn.Sequential(\n",
|
171 |
-
" conv(ni, nf, ks=ks, s=1, norm=
|
172 |
" conv(nf, nf, ks=ks, s=s, norm=norm, act=act),\n",
|
173 |
" )\n",
|
174 |
"\n",
|
@@ -186,7 +186,7 @@
|
|
186 |
},
|
187 |
{
|
188 |
"cell_type": "code",
|
189 |
-
"execution_count":
|
190 |
"metadata": {},
|
191 |
"outputs": [],
|
192 |
"source": [
|
@@ -203,19 +203,30 @@
|
|
203 |
"\n",
|
204 |
"def cnn_classifier():\n",
|
205 |
" return nn.Sequential(\n",
|
206 |
-
" ResBlock(1, 8,),\n",
|
207 |
-
" ResBlock(8, 16, ),\n",
|
208 |
-
" ResBlock(16, 32,),\n",
|
209 |
-
" ResBlock(32, 64, ),\n",
|
210 |
-
" ResBlock(64, 64,),\n",
|
211 |
" conv(64, 10, act=False),\n",
|
212 |
" nn.Flatten(),\n",
|
213 |
-
" )"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
]
|
215 |
},
|
216 |
{
|
217 |
"cell_type": "code",
|
218 |
-
"execution_count":
|
219 |
"metadata": {},
|
220 |
"outputs": [],
|
221 |
"source": [
|
@@ -226,7 +237,7 @@
|
|
226 |
},
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
-
"execution_count":
|
230 |
"metadata": {
|
231 |
"tags": [
|
232 |
"exclude"
|
@@ -237,16 +248,16 @@
|
|
237 |
"name": "stdout",
|
238 |
"output_type": "stream",
|
239 |
"text": [
|
240 |
-
"train, epoch:1, loss: 1.
|
241 |
-
"eval, epoch:1, loss:
|
242 |
-
"train, epoch:2, loss: 0.
|
243 |
-
"eval, epoch:2, loss: 0.
|
244 |
-
"train, epoch:3, loss: 0.
|
245 |
-
"eval, epoch:3, loss: 0.
|
246 |
-
"train, epoch:4, loss: 0.
|
247 |
-
"eval, epoch:4, loss: 0.
|
248 |
-
"train, epoch:5, loss: 0.
|
249 |
-
"eval, epoch:5, loss: 0.
|
250 |
]
|
251 |
}
|
252 |
],
|
@@ -282,7 +293,7 @@
|
|
282 |
},
|
283 |
{
|
284 |
"cell_type": "code",
|
285 |
-
"execution_count":
|
286 |
"metadata": {
|
287 |
"tags": [
|
288 |
"exclude"
|
@@ -293,11 +304,11 @@
|
|
293 |
"name": "stdout",
|
294 |
"output_type": "stream",
|
295 |
"text": [
|
296 |
-
"eval, epoch:1, loss: 0.
|
297 |
-
"eval, epoch:2, loss: 0.
|
298 |
-
"eval, epoch:3, loss: 0.
|
299 |
-
"eval, epoch:4, loss: 0.
|
300 |
-
"eval, epoch:5, loss: 0.
|
301 |
]
|
302 |
}
|
303 |
],
|
@@ -320,7 +331,7 @@
|
|
320 |
},
|
321 |
{
|
322 |
"cell_type": "code",
|
323 |
-
"execution_count":
|
324 |
"metadata": {
|
325 |
"tags": [
|
326 |
"exclude"
|
@@ -329,7 +340,7 @@
|
|
329 |
"outputs": [
|
330 |
{
|
331 |
"data": {
|
332 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ7UlEQVR4nO3dd5hURboG8PfrCQw5wwgMmSEpYBYRxF1XDKiYBVcERZdVUbyoXF12r3K9qyurrmAEV8QArGJEdFEXAxJWZUUQyQKSk8QhzUzX/aN7qk61c3rO9Mx0Ou/veXj4qqtO6KnpM9VVdeqIUgpEREREfhFI9AkQERERxRMbP0REROQrbPwQERGRr7DxQ0RERL7Cxg8RERH5Chs/RERE5CsJb/yIyHoROTfR5xEvIvKAiLya6POoKqzP9MG6TC+sz/TBuqy4hDd+ykNC/iIiu8P/HhURqeJjDhGRL6vyGBHH6yEii0TkUPj/HvE6dryJyEgR+VFE9ovIFhF5QkQyq/iYcatPEWkkIvPCv6t7RWSBiPSKx7HjTUQ+FJGDjn/HRGRpFR8znnXZO+L9HRQRJSJXxOP48cZrbfrgdbZ0ldr4qeofKIBbAAwA0B1ANwD9Afyuio8ZNyKSDeBdAK8CqA9gCoB3w68n4nyquj5nAjhJKVUHwPEI1esdVXzMeDoI4EYAjRGqz78AmBmHn+svVPUxlVIXKKVqlfwDMB/AG1V5zHhSSs2NeH/9EarffybifHitrZhkutbyOlthMV1ny2z8hLvX7hORH0Rkj4hMFpGccF5fEdkkIqNFZBuAySISEJH/FpG14ZbY6yLSwLG/60VkQzjvD+V8kzcAeEwptUkptRnAYwCGeNlQRNqJyJzwcXeJyGsiUs+Rnycib4nIznCZp0SkM4DnAPQMf9PbGy77mYgMc2xrtXJF5EkR2RhuaS8Skd4e319fAJkA/qaUOqqUGg9AAPzK4/ZlSqb6VEqtVUrtLdkVgCCA9h7fR9LXp1LqiFJqpVIqGH5/xQh9OBtE39KbZKrLiPNqDaA3gFc8lk/6uizFDQBmKKUKYtz+F5KsPnmtrYBkqkteZ0vntefnOgD9ALQDkA9gjCMvN3yQVgh9W7gDoW8MZwNoBmAPgKfDb64LgGcBXB/OawigRcmOROSskh+Ui64AvnOkvwu/5oUAeDh83M4A8gA8ED5uBoD3AWwA0BpAcwDTlVLLAQwHsCD8ja+ex2N9DaAHQj+XqQDeKPnF/8VJiSwRkUHhZFcAS5T9zJEl8P4evUqW+oSIDBKR/QB2IfSN5HmP7yEV6lO/BuAIgPcAvKCU2uHxuF4kTV06DAYwVym1zmP5lKnL8Os1AFyJUG9BZUuW+uS1tuKSpS55nS2NUirqPwDrAQx3pC8EsDYc9wVwDECOI385gF870scBKESolf2n8A+nJK9mePtzyzqPcPliAJ0c6Q4AFADxsn3EvgYA+DYc9wSwE0BmKeWGAPgy4rXPAAyLViai/B4A3cPxAwBedSn3R+fPJ/zaawAeKO/7S4X6jDivDgD+F0BujO8r6eozYpscAAMB3OCDulwDYEgF3ley1+X1ANYhhutOqtQneK1Nm7qMOC9eZ8P/vI41bnTEGxBqBZbYqZQ64ki3AvC2iAQdrxUDaBreTu9LKVUgIrs9ngMQGtur40jXAXBQhd91NCLSBMB4hLrjayPU67UnnJ0HYINSqqgc5xLtWKMADEPo/arweTbysGnk+0M4faAyzsshWepTU0qtFpFlAJ4BcHlZ5VOkPrXwz3SaiCwXkcVKqe/K3MibpKpLETkLoW+1M8qxTUrVJUJDQi97ue7EIFnqk9faikuWutR4nTW8DnvlOeKWALY4jxdRdiOAC5RS9Rz/clRo3Hirc1/h7uOGHs8BAJYh1GVXonv4NS8eDp9rNxWa+PVbhLr0Ss65pZQ+Qaq0D3sBgBqOdG5JEB6nHA3gagD1VajLb5/jWNEsA9BNxLqrohu8v0evkqU+I2Ui1EXsRSrUZ2myALSNcdvSJFtd3gDgLaXUwXJskzJ1KSJ5CH1zf9nrNuWULPXJa23FJUtdRuJ1Ft4bP7eJSIvwBKz7AfwjStnnAPyfiLQCABFpLCKXhvNmAOgfHqPMBjC2HOcAhC44/yUizUWkGYBRAF4qyQxPqHrAZdvaCLX294pIcwD3OPK+QugX7BERqSkiOWJuldsOoIXYdwEsBnC5iNQQkfYAboo4ThHC3YEi8if88huGm88Qau3fISLVROT28OtzPG7vVVLUp4gMC3+zKBnXvg/Avxz5KV2fInJGyc9GRKqLyGiEvsn928v2HiVFXYb3Vx3AVXB8Jh15KV2XDtcDmK+UWlvO7bxKlvrktbbikqIueZ0tndcf4FQAHwH4MfzvoShln0RowtFHInIAwEIApwOAUmoZgNvC+9uKUPfZJseb6C0i0b4xPo/QbXtLAXwPYBbsiVt5AOa5bPsggJMQak3OAvBWSYZSqhjAxQjNgP8pfE7XhLPnIPRtYJuI7Aq/9gRCY67bEZr0+JrjOLMBfAhgFUJdnUdgd39aRGSZiFwXPo9jCI2pDgawF6Hb9waEX69MyVKfvQAsFZECAB+E/93vyE/p+gRQDaFJi7sBbEZo3P8ipdQWt+1jkCx1CYR+d/cB+LSUvFSvyxKDUTUTnUskS33yWltxyVKXvM6Wto+yhnBFZD1Ck5Q+iVowwUSkBYA3lFI9E30uyYz1mT5Yl+mF9Zk+WJfJL+6LrVUVpdQmhGafUxpgfaYP1mV6YX2mDz/XZUo93oKIiIioosoc9iIiIiJKJ+z5ISIiIl9h44eIiIh8xdOE598EruLYWIJ9HHwj1sWeLKzLxKusugRYn8mAn830wc9meolWn+z5ISIiIl9h44eIiIh8hY0fIiIi8hU2foiIiMhX2PghIiIiX2Hjh4iIiHyFjR8iIiLyFTZ+iIiIyFfY+CEiIiJfYeOHiIiIfIWNHyIiIvIVNn6IiIjIVzw92DQVZXTJ1/HagQ2tvNZnbtTxqnW5Vt6aCyaafYjdNixWQR13/PxGK6/doMUxnyvFTk7uquP97WtbeVv7mvqqlXvQylPKPO+u+sw6Vl6DyQsq8xSJ0ouYz87O352h41vueM8q9quaq3Tc78O7rLz8WxeZRLC4kk+Qqppk2k2HQF1zDVXHCq08deyYKVerpus+1eEjVjp46FBFTrFM7PkhIiIiX2Hjh4iIiHwlbYe9NgxopOPvb5zgXrCTnQw6Y+XeHbuw99NWenCH63VcvPpHT+dIhurZ3UrvPNF0j9a4ZJuOH85/yyrXOvNLHR+XUd11/wGIlQ5C6XjTyYetvMur36vjJs/Mj3baROnJMbR19MJTrKzc+9fqeHabZ6PsxHyG110y0coZ2qO3jreOaG3lqa+XluNEKRF+HHuqlV56w3gdv32wiZX38paeJi//Xdd9dvrn7610/k3fVOQUy8SeHyIiIvIVNn6IiIjIV9j4ISIiIl9Jqzk/ewebscXZwx915LjPBYlV3UCOlT7zzR90PP/yzlZe8Zp1lX78dHP/q69Y6V45haWW++XcHVO3m4rsuTsbiuxb2J1aZe7XcYtM+/dj8j1P6Hj0M6e77oMopQUydFjcx55zd/Be8/lY2GOSledc8uOnInM78opj9a1yCwo66Ph/Gv9g5U1uOVfHPcfac0TqXWaurcEj9u3PlDiZrVvqeOwV013LXVZrh52OMs/H6dzjl1vpn8pxbrFgzw8RERH5Chs/RERE5CspPey1c3hPK/3FGDNcUU0qf6grmtENl+n49ql29+/60+J6Kmnt1s29rPQXs07Ucav391l5apGpk4z2bay84ESz6ujMjvbKtF2zU/pjETeZbVpZ6S0XNfe0XUGvAh0v7zPZtVy0FdYj8zrPM0tNtL5+tZXHoZPSZbQz9Td76ouu5cbsOMFKf/z4WTqu97L7augZjczK+ie9aO/jP6f8Q8cLur9p5Z34j2t13OTSFa77p/jaNKCFjiOHtirDUy0+s9KX4NTSC1YS9vwQERGRr7DxQ0RERL7Cxg8RERH5SspNbthx65k6nnLv41ZeNcmK9+mUqnpG6bdpk7txvX5jpUde3a7Uck3H24+baAmTVhFli351so7rjl1v5U1r87GO9wTtOSHnj71bxw2Rnk94D9SoYeI6tT1vt26YqZfzLvvKynsn963I4mUKRsuL8niZyLwlZ76k40trn28X5pyfUm1/3P3y3295fx1nXGMvIVFvl7fPRPGu3TrOvcn+nn3TTDNv6O8tv7TyXu1u5oGN7H2rlReY+62nY1Pla/6SmUPZ9bSbrbzebc0jTzrV3GbljWxgL3Pg5v2ChmUXqkTs+SEiIiJfYeOHiIiIfCXlhr2m3vtXHbfPqlbp+++xcLCOc+sesPL+2fntSj8ehRRt226lm47f7lLSFqhthmw232zfTjvnrnE6rh+wlz74+LBJjx1jd603nJ5+Q13OYS4A2PW6uW11/onT4n06lACBmjWt9IgOn7mWvaPVJzoev6tThY9dvHOnlV43xgxJF0753Mrrmm0+mztG2UOWuXNBCVK81ywl0m7QYitvw7mmPneOqWXleR32enPnyRGv7CnX+ZUXe36IiIjIV9j4ISIiIl9h44eIiIh8Jenn/Kwebz9Vu23W1+Xex/CNZ1vpb6Z103Hz11ZaeXkH1uh43R9PsndkP6zd1ZL7eljpLHzjbUPSMps3M4lss4TB9l83s8rVuMrcVrno+AkRe8mBmzsXXaPj1tMXxnaSKWT1g/ZTu5ef+FSlH2PRUROvLWziXjCKTtlbddwtOyNKSdu3xxw3zQfdb5H3M2nW1EoPqTMvQWcCZH2ySMe3bupj5U3KM+d1Uu4mK2+L40n0rGd3GR3bW+ntZzfWcZPXllh5wa5tdfzz8Wa+TqM3vrfK7Rh4vI4PNxEr781hZi5u2yzvS870W3aVjve/fZyV17iKlxlhzw8RERH5Chs/RERE5CtJOezl7LJ75PzpVl7AY3vtwhUDdJw9xF77N3ejWRU4suM0o0u+jkdd8a6nY0XKLCiKaTu/cT5pffl/26t7zv7Nkzpuk2mGrwKwu1uDv1jX2Zvin2qWXSiNdBhrd2FfdqpZwfftDu9bec5h4s8WHg+v2rx7TMcZn/6nvKcIAFj/0NU6/n6o96G5oZPu1HGL3fOjlPSv5fd4X0H33u+u0HELLItSsuL+taKj/YJj2GtyS/ve9gvrnqPj4j1Veyt0qtn4R/P0gwlDnrfyzsoxSwbMGJVr5XXI/kzH3bPN6zNG2+WurDUnytG9DXVN3tfaSh+dbI7ReFp8lxhhzw8RERH5Chs/RERE5Cts/BAREZGvJOWcnzVDzG15l9X82fN216w1T3POumK/joscy3KXZdc4M4dkaJ2Nnrej8pv5+ZtRcqtHyTMi5wA5/euwefzJr6sftfJWDnpax91+vt3Ka/Fw+s0ZCR6wH9USuNY87uLivCFWXsY2M5ei/caqXQZAqtmPqDmWW1ilx/ObjHp1dTyn3xMRubXgRr6q65pHySGjQ1srfe91M3TsnOMT6cpa21zznHNqo5Urj65T79Bx/qNrrLw6OxO3zAh7foiIiMhX2PghIiIiX0mKYa/I1SiHXzzb03YfHqptpY9cYm61LS7HUFcsCpV9k/zJk0bquNVX9orOsd2M7S/RblmfdsCsTPvEhKutvGazNkUW11TBYR2PeamelTevh1lCobBbgdfTTBtF27abhDMGEM+FGjKa26u6rrrgeZeSFJMMsyJymyz3Ya5FR49Z6ZbPm9vbuY5yclpzo71i98DamxN0JsD7BWYZhUnXXWrltf/WPJWhuCh5loFhzw8RERH5Chs/RERE5CtJMey1/kr7IYgj6q/2tN0902+w0q33ln+FyOK+9sNLH+r4iqft9gUjuokfNHcIcZjLm96jbtXx1r5BKy/vQxPX+tLcIdAkYvVer52oAXG/e6XwSFJ8DIgS5kDQfghwVU8boIqTiPFI51SMauL94aJOWWKGSQvL8YfszyvNndZND9l/G5NpqMuJPT9ERETkK2z8EBERka+w8UNERES+krDJDvsHnqHjr37/eESu+3jlhD0ddNx2xl4rL4jyO9Q020qfU919ZUyqXLWnL3TE7uVivdU20K2Tjud1n2rlOX9X2v+dN/Mmyorbc8suVIqX9ze30i0+OeBS0t+K95i5O23eucXKWzdgoo5rB+zrXkb9+o59JO7p6S/tt+eDqsOHXUr6T+sx9hzXvuvv0vHPfewV7QM7zN+57L1R+jwcC+Y37WPfOj+l42smL8NemX3+SSbvvDa3WXk5y5CU2PNDREREvsLGDxEREflKwoa9tvczDzAsz215T390no7bf+ftoWiBGjWs9Iqnuuj41b7PeD6204TdZ8a0HcXP6tHuD0eddcjc+p69ZquVl5w3Zqan009fGdN2D83rb6XzI1ZVp7CgGdLtMnaDnTfAhCdXs4f/VzyYr+MOd/y70k8ro2EDHU/oNdW13DvbT7TSwSPbXUpSwxcWOOLK3//lN92j43ljx7uWO9Igw0rnuJRLNPb8EBERka+w8UNERES+wsYPERER+Urc5vxkdO1opf90xsyY9tPxz+bRF9FuUJZq5la8lY+cYOWt6hfbPB+nD148y0o3xXyXkhQvO26152Et7DPOkbLn//xh8mAdt9jGuosnyTLzSzIDsS0z0PkJ+9Z2LlZQuWrmVe3SAYfOaKfji2rMcS23YW99K90E6TfnRzLtP8NFZ3VzLZtZYObKqq+XVtk5AYCcav/dbPLbDS4lbYeaipWuV1knVMnY80NERES+wsYPERER+Urchr0KG9i3m19Xe6tLyei2X57vmnewpYkl/6COV/aq+DAXAHx4qLaOG33PlaATIaNxYyv949NmheBPz3jUyqsbMENdd27paeXljTO3Rpfj4cVUCTbfeYqOZ7ackMAzITePnPCWjsejU5SSVavoywZlF0pxm0eeZqW/uetJ17JrCs1CHIP+NsrKq7fW2yIdR3//s5VuUP2QjgNiroaDm71nlbu05i7Xff7tZ7N8TMtX1lp5ybp0CHt+iIiIyFfY+CEiIiJfYeOHiIiIfCV+j7d4wH28sDxe/4O5fTnLvqMOx2W4P86gMjx21291nPPpV1V6rEQ40t+MPefsipjTtHBJXM8lUNvMr9owuZWOJ5w4zSrXJ+eYI+Ve/wsnnmSlGxYucClJVSGztZmQN/zG2Ja5WFfk+J0s4s3t5RXcb9++fvPGXjqelDfPyjuveoGOR/7Fni/XdnTFPzs7hro/nX3ivmY6zptsP/4kHWu9++U/eC7bPsv8yf7qHve5QbEKOPpDggi6lnPOPQKAGY+fq+MG21Lj2sqeHyIiIvIVNn6IiIjIV+I27LV5Tp79Qox3T7bMrNqhrVWFZhjlusfsWwmbLTRdsOnY/fr5xIk6LlZ2l2f794bruMOrx6w8mbdYx86nNQPA3nPdlyY4cO1+HefWsbvkP+j0btknHDq6jt4ssFeDfXTcIB03nJQaXbHpau9z5lJzS931Me3joul367jtStZneQUPHbLSW65soeNlc+1hqK7Z5jr70bXjrLz+e+/VcYuHva2OvuVue/X1pT2fcqTs7+DPruqj4ya7Vnjafyr7eWgjKz1mmpl+8FDT5JxeMXDxjVb6uMmp93lkzw8RERH5Chs/RERE5Cts/BAREZGvxG3Oz5FmyTlL5r2IeSLP3XyFjpt+bo9nJ+c7qDxLjplbiTtnZVl5qy55Vse7LrLnB6wuqqXjmmLPB+qW/bHr8QKO+TrBiIdMuN1kednq/lZ635PmFuraX6y28hruTr1xaDKGbzzbSuc/u1nHybpkfiop2rhJxyNuGWHlTZhoHjvSNbuWlbfkdjNfZ+4w8yfktsUDrXJN6phHDC3u8pSVlyHme7fzugMAjcbllHnu6aR49TorvfjOHjqeMtF+iv0Ndbw9Wb0yjNpylpWetai7jjvfZ19rU/FvI3t+iIiIyFfY+CEiIiJfiduwV/4LB630vPPNsEqvnMIqPfbf97W00n+ddYmOO0zZY+UFvv+2Ss8lmd35u9t1vHmIXScTT3tFx12y7W7qXtXMIFUQGZ6PN/eI+6/f0C+G6rjx59k6rv+SPZRVA1t1nIpdr+lK9exupQe1nFPuffw0uoOVDqz372ezqmV99I2VHjHMXAuefmGCldc5u4aO+1Y3n/1lPV+LcgT7e/bQn3rreMvINnbJhYvLOt30ErSvXIG55vf8nT5drbxJF1+q4yZzNlt5BV2a6njDFfY0Aq8azTN/lxvPWGbl5e83t92nw7WWPT9ERETkK2z8EBERka+w8UNERES+Erc5P+pbe/zwgRE36XjL4KNW3rLek2M6xjlLr9Lxvk9ydZw3a6dVrt1yM2/E/bm1/pM924z7t5lt5z2MbjouPsd+QvrhxtmIRa3XF7rm5WNRTPuk5LD+0hpWOtZHWlBiZH1iPn+jTrnYylvzVHMdjzjhcxPXt2/DHrC6n443T2lr5TV4yfHYhuCSCp1rOiveaf/tavCiSUcu91Bt/U86zv+gEo5d8V0kNfb8EBERka+w8UNERES+Erdhr0jVPvhax20iuuj64+SY9lkTP5Yap3v3XbxlfPofK13LpRz515fX/TXiFW+r9g780QyVZK/dYeVxVefEKN6120q3udak30f9UuMQszpxA2wHUTJhzw8RERH5Chs/RERE5Cts/BAREZGvJGzODxGll9VTzBIIdQNfRylp7Anaj0pZ9U6+jo/bNL9yToyIKAJ7foiIiMhX2PghIiIiX+GwFxFVilZTzXepM/59p5V37jCzqvqfm5qVxHtNvdsq1/YxDnURUdVjzw8RERH5Chs/RERE5Cts/BAREZGvcM4PEVWK7NlmLk+TiLwlz5jY+fiatlgAIqJ4Y88PERER+QobP0REROQropRK9DkQERERxQ17foiIiMhX2PghIiIiX2Hjh4iIiHyFjR8iIiLyFTZ+iIiIyFfY+CEiIiJf+X8m3SJfmhtA0wAAAABJRU5ErkJggg==",
|
333 |
"text/plain": [
|
334 |
"<Figure size 720x720 with 5 Axes>"
|
335 |
]
|
@@ -355,7 +366,7 @@
|
|
355 |
},
|
356 |
{
|
357 |
"cell_type": "code",
|
358 |
-
"execution_count":
|
359 |
"metadata": {
|
360 |
"tags": [
|
361 |
"exclude"
|
@@ -368,7 +379,7 @@
|
|
368 |
},
|
369 |
{
|
370 |
"cell_type": "code",
|
371 |
-
"execution_count":
|
372 |
"metadata": {},
|
373 |
"outputs": [],
|
374 |
"source": [
|
@@ -379,7 +390,7 @@
|
|
379 |
},
|
380 |
{
|
381 |
"cell_type": "code",
|
382 |
-
"execution_count":
|
383 |
"metadata": {
|
384 |
"tags": [
|
385 |
"exclude"
|
@@ -388,7 +399,7 @@
|
|
388 |
"outputs": [
|
389 |
{
|
390 |
"data": {
|
391 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/
|
392 |
"text/plain": [
|
393 |
"<Figure size 720x720 with 5 Axes>"
|
394 |
]
|
@@ -415,7 +426,7 @@
|
|
415 |
},
|
416 |
{
|
417 |
"cell_type": "code",
|
418 |
-
"execution_count":
|
419 |
"metadata": {
|
420 |
"tags": [
|
421 |
"exclude"
|
@@ -424,7 +435,7 @@
|
|
424 |
"outputs": [
|
425 |
{
|
426 |
"data": {
|
427 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/
|
428 |
"text/plain": [
|
429 |
"<Figure size 720x720 with 5 Axes>"
|
430 |
]
|
@@ -449,7 +460,7 @@
|
|
449 |
},
|
450 |
{
|
451 |
"cell_type": "code",
|
452 |
-
"execution_count":
|
453 |
"metadata": {},
|
454 |
"outputs": [],
|
455 |
"source": [
|
@@ -465,7 +476,7 @@
|
|
465 |
},
|
466 |
{
|
467 |
"cell_type": "code",
|
468 |
-
"execution_count":
|
469 |
"metadata": {
|
470 |
"tags": [
|
471 |
"exclude"
|
@@ -476,25 +487,32 @@
|
|
476 |
"name": "stdout",
|
477 |
"output_type": "stream",
|
478 |
"text": [
|
479 |
-
"tensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
]
|
481 |
},
|
482 |
{
|
483 |
"data": {
|
484 |
"text/plain": [
|
485 |
-
"[{'digit': 0, 'prob': '0.
|
486 |
-
" {'digit': 1, 'prob': '0.00%', 'logits': tensor(-
|
487 |
-
" {'digit': 2, 'prob': '
|
488 |
-
" {'digit': 3, 'prob': '
|
489 |
-
" {'digit': 4, 'prob': '
|
490 |
-
" {'digit': 5, 'prob': '0.01%', 'logits': tensor(
|
491 |
-
" {'digit': 6, 'prob': '0.00%', 'logits': tensor(-
|
492 |
-
" {'digit': 7, 'prob': '0.
|
493 |
-
" {'digit': 8, 'prob': '0.
|
494 |
-
" {'digit': 9, 'prob': '0.
|
495 |
]
|
496 |
},
|
497 |
-
"execution_count":
|
498 |
"metadata": {},
|
499 |
"output_type": "execute_result"
|
500 |
}
|
@@ -518,7 +536,7 @@
|
|
518 |
},
|
519 |
{
|
520 |
"cell_type": "code",
|
521 |
-
"execution_count":
|
522 |
"metadata": {
|
523 |
"tags": [
|
524 |
"exclude"
|
@@ -529,8 +547,7 @@
|
|
529 |
"name": "stdout",
|
530 |
"output_type": "stream",
|
531 |
"text": [
|
532 |
-
"[NbConvertApp] Converting notebook mnist_classifier.ipynb to script\n"
|
533 |
-
"[NbConvertApp] Writing 3187 bytes to mnist_classifier.py\n"
|
534 |
]
|
535 |
}
|
536 |
],
|
|
|
46 |
"output_type": "stream",
|
47 |
"text": [
|
48 |
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
|
49 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 75.69it/s]\n"
|
50 |
]
|
51 |
}
|
52 |
],
|
|
|
139 |
},
|
140 |
{
|
141 |
"cell_type": "code",
|
142 |
+
"execution_count": 8,
|
143 |
"metadata": {},
|
144 |
"outputs": [],
|
145 |
"source": [
|
|
|
154 |
},
|
155 |
{
|
156 |
"cell_type": "code",
|
157 |
+
"execution_count": 47,
|
158 |
"metadata": {},
|
159 |
"outputs": [],
|
160 |
"source": [
|
|
|
168 |
"\n",
|
169 |
"def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None):\n",
|
170 |
" return nn.Sequential(\n",
|
171 |
+
" conv(ni, nf, ks=ks, s=1, norm=None, act=act),\n",
|
172 |
" conv(nf, nf, ks=ks, s=s, norm=norm, act=act),\n",
|
173 |
" )\n",
|
174 |
"\n",
|
|
|
186 |
},
|
187 |
{
|
188 |
"cell_type": "code",
|
189 |
+
"execution_count": 48,
|
190 |
"metadata": {},
|
191 |
"outputs": [],
|
192 |
"source": [
|
|
|
203 |
"\n",
|
204 |
"def cnn_classifier():\n",
|
205 |
" return nn.Sequential(\n",
|
206 |
+
" ResBlock(1, 8, norm=nn.LayerNorm([8, 14, 14])),\n",
|
207 |
+
" ResBlock(8, 16, norm=nn.LayerNorm([16, 7, 7])),\n",
|
208 |
+
" ResBlock(16, 32, norm=nn.LayerNorm([32, 4, 4])),\n",
|
209 |
+
" ResBlock(32, 64, norm=nn.LayerNorm([64, 2, 2])),\n",
|
210 |
+
" ResBlock(64, 64, norm=nn.LayerNorm([64, 1, 1])),\n",
|
211 |
" conv(64, 10, act=False),\n",
|
212 |
" nn.Flatten(),\n",
|
213 |
+
" )\n",
|
214 |
+
"\n",
|
215 |
+
"# def cnn_classifier():\n",
|
216 |
+
"# return nn.Sequential(\n",
|
217 |
+
"# ResBlock(1, 8,),\n",
|
218 |
+
"# ResBlock(8, 16, ),\n",
|
219 |
+
"# ResBlock(16, 32,),\n",
|
220 |
+
"# ResBlock(32, 64, ),\n",
|
221 |
+
"# ResBlock(64, 64,),\n",
|
222 |
+
"# conv(64, 10, act=False),\n",
|
223 |
+
"# nn.Flatten(),\n",
|
224 |
+
"# )"
|
225 |
]
|
226 |
},
|
227 |
{
|
228 |
"cell_type": "code",
|
229 |
+
"execution_count": 49,
|
230 |
"metadata": {},
|
231 |
"outputs": [],
|
232 |
"source": [
|
|
|
237 |
},
|
238 |
{
|
239 |
"cell_type": "code",
|
240 |
+
"execution_count": 50,
|
241 |
"metadata": {
|
242 |
"tags": [
|
243 |
"exclude"
|
|
|
248 |
"name": "stdout",
|
249 |
"output_type": "stream",
|
250 |
"text": [
|
251 |
+
"train, epoch:1, loss: 1.8902, accuracy: 0.3183\n",
|
252 |
+
"eval, epoch:1, loss: 1.0976, accuracy: 0.6274\n",
|
253 |
+
"train, epoch:2, loss: 0.5929, accuracy: 0.8003\n",
|
254 |
+
"eval, epoch:2, loss: 0.2895, accuracy: 0.9102\n",
|
255 |
+
"train, epoch:3, loss: 0.2396, accuracy: 0.9264\n",
|
256 |
+
"eval, epoch:3, loss: 0.1343, accuracy: 0.9597\n",
|
257 |
+
"train, epoch:4, loss: 0.1139, accuracy: 0.9651\n",
|
258 |
+
"eval, epoch:4, loss: 0.0801, accuracy: 0.9763\n",
|
259 |
+
"train, epoch:5, loss: 0.1368, accuracy: 0.9582\n",
|
260 |
+
"eval, epoch:5, loss: 0.0882, accuracy: 0.9722\n"
|
261 |
]
|
262 |
}
|
263 |
],
|
|
|
293 |
},
|
294 |
{
|
295 |
"cell_type": "code",
|
296 |
+
"execution_count": 51,
|
297 |
"metadata": {
|
298 |
"tags": [
|
299 |
"exclude"
|
|
|
304 |
"name": "stdout",
|
305 |
"output_type": "stream",
|
306 |
"text": [
|
307 |
+
"eval, epoch:1, loss: 0.0882, accuracy: 0.9722\n",
|
308 |
+
"eval, epoch:2, loss: 0.0882, accuracy: 0.9722\n",
|
309 |
+
"eval, epoch:3, loss: 0.0882, accuracy: 0.9722\n",
|
310 |
+
"eval, epoch:4, loss: 0.0882, accuracy: 0.9722\n",
|
311 |
+
"eval, epoch:5, loss: 0.0882, accuracy: 0.9722\n"
|
312 |
]
|
313 |
}
|
314 |
],
|
|
|
331 |
},
|
332 |
{
|
333 |
"cell_type": "code",
|
334 |
+
"execution_count": 52,
|
335 |
"metadata": {
|
336 |
"tags": [
|
337 |
"exclude"
|
|
|
340 |
"outputs": [
|
341 |
{
|
342 |
"data": {
|
343 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAc5klEQVR4nO3dd3yV1RkH8N+ThL0CGCDISBDCFEQUQaVOtG7UOhARq1itiijWWm21rlZxIVKUqihacWCduGitG1GGIgioTBkyIwHCkiSnf7yXc97nmje8SW6Sm7y/7+fDh+fkvOvek5ucnCnGGBARERFFRUpVPwARERFRZWLlh4iIiCKFlR8iIiKKFFZ+iIiIKFJY+SEiIqJIYeWHiIiIIqXKKz8iskJEjq/q56gsInKbiDxb1c9RUVieNQfLsmZhedYcLMvyq/LKT2nE3oA9IpLv+9ehgu95sYh8WpH3iLufEZHtvtf3RGXdu7KJSLqIPC0iG2L/bquEe1Z2eZ4mIt/EyvIzEelWWfeuTCJyrYgsE5GtIvKjiIwRkbQKvmellaWI7Cci00UkV0TyRGSGiBxRGfeuCuIZHXu9uSJyr4hIBd+zsj+bB4nIHBHZEfv/oMq6d2Xi783iJbTyU9E/7GJeNMY09P1bVgn3rGy9fK9veFU9RCWU5xgA9QFkAegLYKiI/LaC71lpRKQTgMkArgCQDmAqgDcq6XMS/ywVfc+pAA42xjQG0ANALwDXVPA9K1M+gEsAZABoCmA0gKlVUZZApZTn7wAMgleOPQGcCuDyCr5npRGR2gBeB/AsvPJ8GsDrsa9X9rPw92ZilOr35j4rP7HmtZtEZKGIbBaRp0SkbizvaBFZLSI3isg6AE+JSIqI/ElElsb+YpgiIs181xsqIj/E8v5crpdaCiJygIi8H7vvJhGZLCLpvvy2IvKKiGyMHfMPEekKYAKA/rHaZF7s2A9FZLjvXFXLFZGxIrIq9lfwHBEZUFmvc1+SrDxPA3CvMWaHMWYFgInwfsGEeR3VoTxPBPCJMeZTY0wBvF+Y+wM4KuT5JUqmsjTGLDXG5O29FIAiAB1Dvo6kL0tjzC5jzHfGmKLY6yuE90uzWclnhpdM5QlgGIAHjDGrjTFrADwA4OKQryPpyxPA0QDSADxkjNltjHkYXrkeG/L8EiVZWZbndVSHsiyTsC0/Q+D9ID8AQA6Av/jyWsH7AdAe3l8L18D7i+EoAK0BbAYwHgDEa/J/FMDQWF5zAG32XkhEjtz7RpXgNBH5SUQWiMjvQz4/4H1j3x27b1cAbQHcFrtvKoA3AfwArxVifwAvGGMWwfurfUasNpke8l6zABwE7315DsBLe7/xf/FQIvNE5IK4L38sIuti31RZIe9ZGslUnhIX9wj5GqpDeQp++fpK8xrDSJqyFJELRGQrgE3wWgz+GfI1VIeytF8DsAvAGwCeMMZsCHnfsJKlPLsD+NqX/jr2tTCqQ3l2BzDP6P2d5iH8awwjWcoS4O/NXzLGlPgPwAoAV/jSJwNYGouPBvAzgLq+/EUAjvOlMwHsgVfLvhXem7M3r0Hs/OP39Ryx47vBK4RUAIcDWAtgcJhzi7nWIABfxeL+ADYCSCvmuIsBfBr3tQ8BDC/pmLjjN8NrkgO8b5xnSzj2VwBqw+sm+QeAb4p7rrL+S7LyfBbAKwAawWslWApgd00pTwBdAGyPva+1AdwCr0XkpppWlnHP1QnAnQBa1ZSyjDunLoDBAIYlohyTsTzhtWx1iStTA0BqQnnGPosvxH1tMoDbamBZ8vdmMf/C9jWu8sU/xN7IvTYaY3b50u0BvCoiRb6vFQJoGTvPXssYs11EckM+A4wxC33Jz0RkLIDfAHh+X+eKSAsADwMYAO+XbQq8NxfwarM/GK9rotxE5HoAw+G9XgOgMYD9wpxrjPk4Fv4sIiMBbIVX456fiGeLSYryhPfXzjgAiwHkwivHwWFOrA7laYz5VkSGwfswZsKr7C0EsDoRzxWTLGVpGWMWi8gCAI8AOGtfx1eHsvSLvafPi8giEZlrjPl6nyeFlyzlmQ/vvdmrMYB8E/tNU5JqUp7xrw+x9LZEPFdMUpQlf28WL2y3V1tf3A7Aj/77xh27CsBJxph037+6xus3Xuu/lojUh9eEV1YGuluhJHfHju9pvEGZF/rOXQWgnRQ/8Ky4D/t2eAN192q1N4j1U94I4FwATY3X5LelFM9Z3P0TPcsiKcrTGPOTMWaIMaaVMaY7vO/HmSFPrxblaYz5tzGmhzGmOYC/wvshNyvMuSElRVkWIw1ec38Y1aIsi1ELQKJnzSRLeS6A13W5V6/Y18KoDuW5AEBPETWDrSfCv8YwkqUs4/H3JsJXfq4SkTaxAVg3A3ixhGMnAPibiLQHABHJEJEzYnn/BnBqrI+yNoA7SvEMEJEzRKSpePrCazl43Zf/oQRPl24Er7afJyL7A7jBlzcT3jfYPSLSQETqipvGuh5AG9GzAOYCOEtE6otIRwCXxt2nALHmQBG5Fb/8CyPo9XUXb/plqog0hDfIcA28JtFESpbyPEBEmsde70nw+r7v8uVX6/KMvYY+sdeXAW8MzFRjzLdhzw8hWcpyeOyvxL1jFG4C8D9ffrUuSxHpt/e9EZF6InIjvL/KvwhzfikkRXkCeAbAKBHZX0RaA7gewKS9mdW9POF1wRQCuEZE6ojI1bGvvx/y/DCSoiz5e7N4Yd/A5wD8B8Cy2L+7Sjh2LLzBgP8RkW0APgdwGAAYYxYAuCp2vbXwms9sF4CIDBCR/BKufT6AJfCaJp8BMNoY87Qvvy2A6QHn3g7gYHi1ybfgjTVB7LkK4c086ghgZeyZzotlvw/vr4F1IrIp9rUx8Ppc18ObIjnZd59pAN4B8D28ps5d0M2fingD0IbEki3hfUC2wnufswCcaozZE3R+GSVLefaB1yy5Dd5fGENi19yrupcn4L1/eQC+i/1/WdC5ZZQsZXkEgPkish3A27F/N/vyq3tZ1oE3ADUX3g/WkwGcYoz5Mej8MkqW8vwnvOUL5sMbP/EW9AD2al2expif4Y1fuQje5/ISAINiX0+UZClL/t4s7hr76sIVkRXwBim9V+KBVUxE2gB4yRjTv6qfJZmxPGsOlmXNwvKsOViWya9KFuiqCMaY1fBGn1MNwPKsOViWNQvLs+aIcllWq+0tiIiIiMprn91eRERERDUJW36IiIgoUlj5ISIiokgJNeB5YMo57BurYv8teikhCx2yLKteosoSYHkmA342aw5+NmuWksqTLT9EREQUKaz8EBERUaSw8kNERESRwsoPERERRQorP0RERBQprPwQERFRpLDyQ0RERJHCyg8RERFFCis/REREFCms/BAREVGksPJDREREkcLKDxEREUVKqI1NiYgSpeDYPja+e+IEldendqqNU0X/bVZoigKvecuGg2z80d2Hq7yGUz4vy2MSRU5aZisbrzmng8pLHbjJxqe2W6DyVu5sZuN5GzMDr/9+76dVemJedxu/d96hKq9wwXchnrjs2PJDREREkcLKDxEREUUKu72IKOHSstur9MIbW9r42RNcV1fv2vrvryIYF5vC0Pe7vcVXNh48ooXK2zYl9GWoGJsu76/SM28db+M+o6+2ccuZ+eq45YMa2PiLIQ+ovKap9W18wItXqLxOf3JlaXbvLsMTU0kKjuuj0k88OdbGDVLExi1SG6BM2pWUWU+lRjVbZuO3M45WeamoWGz5ISIiokhh5YeIiIgihZUfIiIiipSkHPOTtn9rG+cerTsQN5++I/C80zvNt/Hy7c1tvOjtHHVcxrw9Nq7z1qwyPydR1Eit2i7Ro5PKK6rrfpwc9/gnKu+1pq+Euv6Wol02PvSt61RenQ1uFMCI37yp8n7XZIWNj2mup8i+ldHFxoUbN4Z6jqhLbdzYxnXPXK/y/OOyZt04zsb35XZTxy3+6GgbbywyKq9hihvP9e2541VeTgM3BqjlR3rkR5PJXLagvGpt0eOoJuUdZuMFW9009fw9ddRx36924/ZqrdR5vm8JZM4oUFn1F+faeMX5rVReu3e22jhtvp4+r79jEo8tP0RERBQprPwQERFRpCRFt9ePN+gVWe+5/Ekbn1Bve+B5KRCVLgpqKLt6WuA1Jm7R3WqFvvrgfzfqZtyF0/WKl36tP3VNfQ3m/Rh4XLzCjW7VTE7rdFLTm9h445muHHafkaeOm9f3eRvHrwDce9YQGzea3FjlNXzpi0Q8ZuSsvv4QG381YlwJR4bzcv5+Kn3TJ2fbOOeKmSrPP32+39ClcVdy3SMf5HZWOezqKoMWbtjAhwe+FOqUG5ov1Omz/Om6oW/9/SluKYQPjtXn3bnzEhvXf1V/f8BUdEdJzWBmf6PSs884wMZ5E1yVYFh73cU47t1BNm5972eh7+dfsKLtnctUXlWWGFt+iIiIKFJY+SEiIqJIYeWHiIiIIiUpxvzUytc9fyWN8/Hr9tRVKt1ksYvz27rxQN1O/F4d93wHNwbosiarVJ5/3JB/+iwAoGPws6QMc/cLHHtUjEPuH2HjVmPC96PWNKnd9TiNonFuqfx72j9m48veGa6OO36sGwOQlqfHTBWc4sYNHX7TDJVX62Y3PuiDe/WYs8bPczptkB2ZwTurh3XM/HNs3OgPtVVezjezA89bN9AtgdGzdvDi95t2NlTpOtgUcCTtZfr3UumLJr2R0Ouft/TXKn1I+kobx48V8jum3i6dHveIjY81V6q8+q9yHF8YRUcepNJ3/Mv9fO1cy32++z46Sh2XNcGNFQq/8UzyYssPERERRQorP0RERBQpSdHt1fKzvNDH9vyn6ybKuiO4m6ipL86/R7/MQS1PC3Wvtafpnam3tw11WolqbdXT89s8MsfGUZuo6Z/OfsVrU1XemBUDbXzf+RfYuNOs4Kbt+PevrdscGgv/pQtv2f3pNj77xukqb87CHjYu+npR4P2iqPFS9/fSXzbo3aFvznBdi4MXn63yFn3XxsaZH7hrFH2juxi3Du7nEvqjgqEj3wl8Lv/K0BibEZe7IvA88uxqqVfsTU8NXkm/TNe/tJFKf9DS7RS/Z7zuwrx5v/kI48Cbv1bppa+W8eEiIO8i934/cvtYlefvQj7kvmtt3PYh/fu1JnR1+bHlh4iIiCKFlR8iIiKKFFZ+iIiIKFKqbMxPWpbbVqL/v74KPC5+imT2I27H5rB9kKZA7zJbsCbc9hMZE/Rx8SMJEiFK43xS6tdX6bTX69n4lgVnqLzWQ9xU2KLtP5T73gU/6CUN2p3j0p+c1l/lbb3D7TSceUkzlVeY+1O5n6U6a/mwGwcw7yk9jmNw66EusV5vKVH/9+5Hzabe7rt+wJ/09e9qoXf4DuvQqW4H+Jy3ZpZwJBVn/aF63E2P2rm+VD2EsblIT0sfMOkPNs5e+aXKS1nstjl4Z43eRijsmB8K74DLv7Vxnzpxy0t8NMzG2Q9FZ7kVtvwQERFRpLDyQ0RERJFSZd1eBRPdSpI3/WKFTzfHde2EA1TO9otcfa3Zd3sS/lz1PnbNg0XbtiX8+lG29Em9RPaijpNsfPohJ6u8gu3hVvkOK35V05Unuab8rD/r1Z/r+mbd17TpnYkU//lIqeeWExg+U3dln97g/Qp9lm73b7BxQQnHkZPaMdvGWf10t3DL1HBdXWsLd9r4pAl/VHlZf3ddKFHq3k8GRUf1Vunnsp+y8Q3rdF6HoQtsHKVyYssPERERRQorP0RERBQprPwQERFRpFTZmJ+3u7hdg0vaBf3j+4KnvqbErX9fmt3Ug67xQr6b0H7L53r6ddcb19i4YN36Ut8ritL2dztxLxowSeX1fvBqG2euTfwUS+nd3cb1/rZO5dXZ3DT+cCql1O6dVXrIi9NsfHqDzeW+/vg8Pd5v1S637MA9rWapvCW/zbRx1i0ryn3vmmj53XpJh4793BISb+ZMjT88lC93t7Jxm7+H/wzvHNTXxld2eKVM9z63mV7S4I/DLrdx06dnxB9e46U0cktPFNySG3jc6+/2U+nsgui9VwBbfoiIiChiWPkhIiKiSEmKXd23xK0MetbCC2289utWKq/pAgTa7Ho5kNlrXeBxx7T63sa3xq0mem5DN2X23OMfV3nj3utk4yde0CtPt70rOitjlsb3I9vbeNZu3S2Z+UBi37Nt5+vm3HNvedfGV6UvVXk9HxuR0HtH0eZeuuvQ/9kJa85unR7y2lU27jhK7/ie2t19/vAf3e314bD7bHzhByNVXtr7c0r9XDXRrwfOVukHMj8PODK8B2+4wMb1EH5l7dyu7lfP4EZlG0Lw3rbuKp3xnuvGi+JyBxvP72Hj2d0eVXnTd7mlZTreE/dLtLNbgmRrj+Y2Lqyth4SsG1CEIJkfuXaU9Pf1z9rCjRvjD08KbPkhIiKiSGHlh4iIiCKlyrq9Tu97qksU6ea0emuX27gDliOssPN3ZjZId8+RfmrgcUuubK/Sc4aNsfHg381TeYdnX2vjnEt183KU+Gd3AcBDZ7mVRS/7eqjKa434lb2LJ2m+b9MD9QyjXaPdStBrV+rG7of/d6KNs06arPKyx7qmX67iXDaNftDd1VevOdLGHyzrpPIyXnYrBtfNdeVUZ32+Oq7jgrJ1xeznW5F45a/1xo0dKnZx6aRWeMzBNj644ZsJuebIH4+wcaO5bnhBSV1NqRl6W2jTZ2vAkeH9tKeBSofdsLqmyusSPNs5PcX1L58wY6XKO7GBGx7QtbbefDq0QS58a0ddlTVqzrk2PuByvUl1Yd6Wst0vAdjyQ0RERJHCyg8RERFFCis/REREFClVt6t7FfbPFvl2DC8qYffwrD/rZ+y7Y5SNH7lkgsqbdvxYG1/b9WKVV7hocVkes1oqbKFHXp1Qz72/t9XSowLixwf5Lbs0y8a/OtXtEJ5eS0/T/GS0m97e+eUvVd6BX+yx8Z+fukjltcnj0gTlJdPnqvSKfqk2zi6ahzBKNd5q/SYbxq/+7F/KoFd//XnTe89Hy7Kzatl4SKO1ZbrGDesO09e8wr33ZkUJa4/4zxmvlyyZ339SmZ6FyqZ77Xq+eIXKW13gxtxO3OLK6W+zTg68Xq2VdVS6oL0b//fBUeNU3ncDnrFxh9uvUHmdRpZ/uYWyYssPERERRQorP0RERBQpSbHCc3XR9m+uq2TEbt18N3/UIzZedI3u+sn5fcU+VzJJWb5apc9c7JYS+Kz38/rYmW4F0fhNaQcuONvG3955oI3rTtWryDaCazZddo/euLHtHtf10n7iEpXH6e0VoKiC39UC122aX1i3hAOja9epfVX63dMf9KXK9p5NX9tBpZvNCdfVlZbtlgqZ0GdyCUeWzaz17VS6Gb4PODIast9w09l7ZA9RebuWu01PW+jF0ZE+262wXbjELS3TCXoYQVi/z7pApV/8dIqNz/mV7uaaW6Y7JAZbfoiIiChSWPkhIiKiSGHlh4iIiCKFY37KSOJWEi80brrgiAHvqbxpaFwZj5QU4pcrNye76eZ9L9E7qRvfpsGZE+eqvDo7VvhSKxAkrW0bG78z+D6VN2j8H23cej2ntlel1E6+cSO1awUfWIIdWe5zdGPz4D0rvvyyo0p3wqaAI2uewrp6J+7stLKN89lUuNPGuz7aLy433NiaFfc3tPERdfeUcGTZ7HfeGpUO3nM8GlI+ckuC7P9R+PMSPVJvR+cWKl1HyvZ5r2hs+SEiIqJIYeWHiIiIIoXdXhVg3MfHq3QOZgYcWfMV7dhh4xb/CO56KmuT9Y4n3arCJ3yiu9U6Peje9+D9jqk05FC37MBP3RuqvNxe7l3u2lvv3jwu263y2iatHhJtdG53d++H9ErGJe02XtM0maVXpf/VPLej9sc9p8QfHmhVoVvBt/V9wZ/btDb72zj3MV2uf+2YmF3k/Tq/cqWNc3bPSfj1qWwkzVUlhj/8qsqrJe5n9Etf91F5nVB1ZciWHyIiIooUVn6IiIgoUlj5ISIiokjhmJ9SSKlf38YF/bcGHtf8y9TAPCqf3accqtLPdB5j46FjR6k8UxCl0R4Vo/CYg1X6romP27hPnfijgy342U13PW/u+TZOTdGjvbo03WDjx9p+GPr6OXXdOJ9Plkd364uCH1ap9Jbph9t4dbedKq+ksVfDx420ccujdgYed9x4N6d6RNPFoZ+zJOt90+yPef4GlZdzq9tygZ/vqpOa3kSl97zslqEY0mi2ylu6J9/GXe/IVXlVWYJs+SEiIqJIYeWHiIiIIoXdXqWw7KZeNv6m/z9U3ujcbjbOePEblRf1lUfLKzUjw8bjxz+s8k58wq3i3O5NruKcaM3u1FPW/V1dX/2sv7MvG+u6Smrl68UFWrzmVgVuusl1j6iVnwHMPsNNpcd1H4Z+zmPruSne916md5Vu/viM0Nepadre5T4TYwYdo/IeyPw8/nBrzvXjKuyZ4p2w8CyVXjujtY073KrLjktWOCkNGqh0nu+zkz51gcor2rat3Nf/uV8XG2/9Q57Km9H15cDrXHzd9Tauv+yLUj9HRWHLDxEREUUKKz9EREQUKaz8EBERUaRwzE8c/9Te5afVVnkzzrnfxinQ00Qf//QoG+dsi+52FhVh6Ui3S/fc3W1UXvZzbopzoncnjqrU7p1t/GC7iXG57vv+vPeuVDldJ7lxBkXZupyWjswp9l6XnzlNpUuaLl3kGz23vnC3ymsk7u+4VkNWqLw9j4OS2LYprVW6fYTHaJXGkr/2VOnFFz5q44GXnqbyNj/Xw8YtPl4feM1vr3HjK/90/FSV97sm0wPPW13gprMP9I3DBIB2ryXPOB8/tvwQERFRpLDyQ0RERJFSY7u9/Ksxo1N7lbf0vHQbjxr0hsr7TSM3xbNJil4pdnWBm2h5xOSrVF7XB5bYmN0v5edfQfS6s1wZ/X3Seeq4Nks4vT3h1m+y4ZStumnd3y31/ckT9HknJ/Yx4qfSX3HvNTbOeFR3jRQdeZCNa+VuT+yD1BBLTmmqv/Bl8cdVhL9s0Lt5v/pufxt3eGqWyuN09nA6PrtZpU8/7Nc2npLzospremd9lNYeo3+TXbv2MBu/Mb+XyssZ/7ON282qHj+T2fJDREREkcLKDxEREUUKKz9EREQUKVU25ufn/7pxOPm79fbQ8u/moa6xsZ/uk2zfwe0IfVDz1Ta+r9WzgddIgaj0Zt8wg5xpl6u8Lg/vsHGHuXrMAcf5JNaie93U6EvTvrJx+9c3qeP4vide4Sa38/LLtw9UeYMfmGfj/VKDdwWP9+BPbmn8x+YeGXicyXPLS3R55CeVl7EoeAp0yqdzbczvieIV5W1R6cPmuG1AvujzXMLvN3DB2Tauf4HeXiF7kytLjvEpm6J536r0brfaCi7oeYnKW3FmMxuPGaqXr6gre2z8249/a+O2r6eq4+q95pZw6YQ5Kq86liFbfoiIiChSWPkhIiKiSKmybq/3ur1q46L4RrPe4a4R32Xlv87ygl02vn7t0eq4adMOsXHmpwUqr8HcVTbOWTs77vpUUeJ3EB599BQb3/bYhTZuvbB6TKOsKRq+pFdnvfil4C6rsDriq30fBHZfJZrZrVfFzrzSrcp7bF+9Wvdlf3e7dA9uFLwi8KH3jLBxozW6xBp/tc7GBb6uVKp48V1i7VxvNcbc3jXwvJy47qyajC0/REREFCms/BAREVGksPJDREREkVJlY36Ou8xNIy+op+tgG87ZaeNmjXeovIuz3BTJB+cdp/JSFzW0cfu33dRKM2u+Oi4LwVNmCwJzqCKtvlIvl96l9v9s3PZtN72d40CIEqNg9Rob1/fFADD5lTYuRhsEaYngMXj8WUrJjC0/REREFCms/BAREVGkVFm3V5233U6+deLysl9GoFeR4Y7DvMDjquOKk1E26cqHVPo3L1xn4+yFwd2UREREpcWWHyIiIooUVn6IiIgoUlj5ISIiokipsjE/RH43Z/dV6ewSliMgIiIqD7b8EBERUaSw8kNERESRIsZwUjgRERFFB1t+iIiIKFJY+SEiIqJIYeWHiIiIIoWVHyIiIooUVn6IiIgoUlj5ISIiokj5P0TtsIzRFepPAAAAAElFTkSuQmCC",
|
344 |
"text/plain": [
|
345 |
"<Figure size 720x720 with 5 Axes>"
|
346 |
]
|
|
|
366 |
},
|
367 |
{
|
368 |
"cell_type": "code",
|
369 |
+
"execution_count": 53,
|
370 |
"metadata": {
|
371 |
"tags": [
|
372 |
"exclude"
|
|
|
379 |
},
|
380 |
{
|
381 |
"cell_type": "code",
|
382 |
+
"execution_count": 54,
|
383 |
"metadata": {},
|
384 |
"outputs": [],
|
385 |
"source": [
|
|
|
390 |
},
|
391 |
{
|
392 |
"cell_type": "code",
|
393 |
+
"execution_count": 55,
|
394 |
"metadata": {
|
395 |
"tags": [
|
396 |
"exclude"
|
|
|
399 |
"outputs": [
|
400 |
{
|
401 |
"data": {
|
402 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaPklEQVR4nO3dd3hVRfoH8O+bRopEOpEiCCSAiiKIgg1RdBXrsmtDEVQUxMK6Cuy6P8W26C6yrqhrxQa6CIrYXRFsKAKiSBMQpKj0SO9J5vfHOZk5c5/ccJLcfr6f58nzvJM55565d3Jv5k47opQCERERUVCkxbsARERERLHExg8REREFChs/REREFChs/BAREVGgsPFDREREgcLGDxEREQVK3Bs/IrJKRHrGuxyxIiL3iMj4eJcjWlifqYN1mVpYn6mDdVlzcW/8VIWI/ElEfhKR7SKyVkQeEZGMKF+zv4jMiOY1PNdqICJfikixiGwVkZkicnIsrh0PItJDRD4RkW0isipG14xZfbrXe0ZElopImYj0j9V140VEskRkiYj8EoNrxbQuPdftJyJKRAbE+tqxIiIfiMhOz89+EVkQ5WvG8rP21JDnt9Ot0z/E4vqxJiKdRORz93luEJEhUb5erD9n00XkAbddsENEvhOROpWdE9HGT7QbIgDeAdBJKZUP4GgAxwK4NcrXjKWdAK4F0BBAXQD/APBODF7XCsXgursAPA9gaJSvE0/fAxgM4Nt4FiKGf0NDAWyM0bViTkTqAvgrgEVxLkdU61Mpda5S6pDyHwBfAZgUzWvGklLqi5Dndz6cz98PY12WGHyBbwDneT0NoD6ANgA+iuY14+BeACcB6AYgH0BfAHsrO+GgjR+3e+2vIrJYRLaIyAsiku3mnS4iv4jIcBFZD+AFEUkTkb+IyAq3B2OiiNTzPF5fEVnt5v2tKs9OKbVCKbW1/KEAlMGpyIMSkdYiMt297mYRecXbMhSR5iIyWUQ2ucc8LiLtATwFoJvbYt7qHvup91tfaCtXRB4VkZ/dHqq5InKqz+e3Vym1VClV5j6/UjiNoHqVn+lfgtXnbKXUOAA/VeN5JHx9us/xCaXUNBzkjVgdiVSX7vlHALgKwINVPC8p6tL1IIAxADZX8byDSrT69DxOSwCnAhjn8/hkqs9y/QC8rpTaVc3zLQlWl38G8D+l1CtKqX1KqR1KqR98Po+Er0txvpD8CcD1SqnVyrFQKVWzxo/rSgC/A9AaQBGA//PkFcD559wCwA1wemIuBtAdQBMAWwA84RbySABPwmmVNYHTCm3meRKnlL9Q4YhIHxHZDufD51g4rVk/BM4HVxMA7QE0B3CP+5jpAN4FsBpASwBNAUxw/0AGAZjpfkOo4/NacwB0hPO6vApgUvkffgXPZ76I9An9HZx/lm8DeE4pFelv0glTnzWQNPUZZYlUl48BuBPAnio+h6SoSxE5AcDxcD7YoyWR6rPc1QC+UEqt9Hl8UtSn5/e5AP4I4CWf1/QrUeqyK4DfROQrEdkoIu+IyOE+n0My1GUHACUA/igi60VkmYjcdNCrKaUq/QGwCsAgT7oXgBVufDqA/QCyPfk/ADjTkz4MwAEAGQDudl+c8rw89/yeBytHBeUqBHA/gIKqnuuefzGA79y4G4BNADIqOK4/gBkhv/sUwIDKjgk5fguAY934HgDjfZQvG8AVAPpV5/klU30C6AlgVQ2fV6LX5wwA/VO1LgH8HsCHnmv/kkp1CSAdwDcAulV0nVSrz5ByLa/J324i1mfIOX0BrAQgqViXAJYB2AqgC5z/K2MAfJkqdQmgDwAFYCyAHADHuOU6q7Ln4nes8WdPvBpOK7DcJmV3L7UA8KaIlHl+VwqgsXuefiyl1C4RKfZZBotS6kcRWQTgPwB6H+x4EWkEp9JPBVAbTq/XFje7OYDVSqmS6pSlgmvdDmAAnOer4IxBNqjKY7iv6X9F5AcRmaeU+j4SZXMlXH1WVbLVZxTFvS5FJA/AP+F8wFdZktTlYADzlVIzI1GOSsS9Pr1E5BQ4vRSvV+GcZKhPr34AXlbuf9IISpS63APgTaXUHAAQkXsBbBaRQ5VS2yo7MUnqsryn+T6l1B4A80VkApzPo6nhTvI77NXcEx8OYK0nHfoH8zOAc5VSdTw/2UqpXwGs8z6W291Y32cZKpIBp0vRjwfdsh6jnAnTV8Hp0isv8+FS8cSzit4QuwDketIF5YE7TjkcwKUA6iqny2+b51pVlQmgVTXPDSdR67MqkrU+Iy0R6rIQTrf3F+4chskADnO7oFv6OD8Z6vJMAL93n9N6OJMrR4vI4z7OrYpEqE+vfgAmK6V2VuGcZKjP8sdoDqcn5mW/51RBotTl/JDrlcd+XqdkqMv5lVwzLL+Nn5tEpJk4E7DuBPBaJcc+BeDvItICAESkoYhc5Oa9DuB8d4wyC8B9VSgDRGSA2xItHwf9K4BpnvxPReSeMKfXhjObf6uINIW9wmg2nD+wh0QkT0SyxSwx3wCgmVvecvMA9BaRXBFpA+C6kOuUwO0OFJG74bRg/Ty/ruWvjYjkiMhwOC3/WX7Or4JEqc80d0w300lKtvd1Tvb6dJ9DlvscBUCmW5ZIrrJMhLpcCOfDuaP7MwDO69wR7jfWFKjL/nDmPJQ/x2/grDCp9kTiMBKhPuE+Xg6ASwC8WEFestdnub4AvlJKrajieX4kSl2+AKfh3lFEMgHcBWe4aat7raSuS7fuvgDwNxGpJc6E68vgzEcKy+8L+CqcpXE/uT8PVHLso3Am6n4kIjsAfA3gRLeQiwDc5D7eOjjdZ3o/EHH3XqjksU8GsEBEdgF43/2505PfHMCXYc69F0AnOK3J9+B8O4VbrlIAF8BZObbGLdNlbvZ0OMta14tI+QqPR+CMuW6AM0nuFc91/gfgAzjjrKvhTFz2dn9aRGSRiFzpJmvBmeRWDOBXON125yml1oY7v5oSpT5Pg9Nl+T6cb0Z7YC/BTPb6hPt89sDpKXjGjU8Ld341xL0ulVIlSqn15T8AfgNQ5qZL3cOSui6VUltDnuN+ANsPNmxQDXGvT4+L4dTJJxXkJXV9elyNyE90LpcQdamUmg7n/+R7cLahaANnnky5VKjLK+AMHRa75bxLOatsw5KDDXOKs/ncAKXUx5UeGGci0gzAJKVUt3iXJZGxPlMH6zK1sD5TB+sy8cVl87xoUEr9Amf2OaUA1mfqYF2mFtZn6ghyXSbV7S2IiIiIauqgw15EREREqYQ9P0RERBQobPwQERFRoPia8HxW2iUcG4uzqWWTIrKpHusy/iJVlwDrMxHwvZk6+N5MLZXVJ3t+iIiIKFBSZqk7ERERxV7GES10PGK6fRu4y9++RceFQ76OWZkOhj0/REREFChs/BAREVGgsPFDREREgcI5P0RERFRtW59M1/FxWXafSq3fErOPJTFLRURERBQlbPwQERFRoHDYi4iIiPw7oYOVHNN2rI43lO638lq+tVXHZVEtVNWw54eIiIgChY0fIiIiChQ2foiIiChQUmvOj2ccctk1OTp+85zHrMM6ZGXqOF3s9l/v5WfpeMddzay8tM++i0gxiYiIklXOqI1W+pgss9S9y0PDrLzG876KSZmqij0/REREFChs/BAREVGgJPWw17rbT7LS9w16Wcfn5W7T8du7GlrHzduXreO0kMV3r7X+UMfH3tLPymv+WfXLStF3+/JFVvrMnH06Dh3ePK/zOTouWbc+ugUjIkpym2/opuOPW4228qbtqavjJhOXW3ml0S1WtbHnh4iIiAKFjR8iIiIKFDZ+iIiIKFCSbs5PRkFjHY8YON7K887zOXL8zTouHLXMOq50c7GOJTPLyps4tYuOJx3/rJU3oM9tOs5/9euqFJti4ADSrXQZlIlVyMizUqDgKb6um53uWqLjomf32gfPXhCLIhElJO8cHwCYe8+TOl60X6y8Mef00nHphpXRLViEsOeHiIiIAoWNHyIiIgqUpBv2WnFjax1fmPe+lXf24t46LnzYLLfzDnOFUgfsO9AuXnOYjosK7SGx4gt36zj/VZ8FpqhKyzbbFqQj/FDWUeNuttKtiudGrUxBlV6/no53n9Daysv5zGxDULZ7N2Jp37lmKHtLD3toa0mPZ3T8SY9DrLxH2rSPbsESmLcuMybbn4OFh5jdfRfcbHbV//X0POu4Wt3M5+6szpH/wDzlL/Z7us64mRG/RtDIcUfp+OO77OXspcp81t74pyFWXs7y2dEtWBSw54eIiIgChY0fIiIiChQ2foiIiChQkm7OT+YuE/93R2MrL+eKnTqubJ6PV8mZna30hFOf0vEPB+zl0S0eZ1sx3tLbtrHS+c//puMzc8LPJclfYadD53pRzf3at52OZw991Mq7d6N5n809LrrvI+l8lJU+aeQsHY9oZM/1+mC32ZZ/xONXW3kFSMy7UUdDxmEFVrp4rJn/9Fmb/4Y97+Nxi3XcM2eHlZfm+W5dFnIboUjY3Xubla4zLuKXCISMpk10fM74GTo+JK2WdVzhmzfquOhd+32UjBuH8L85ERERBQobP0RERBQoSTfs1fRfZknda5NOtvJKN6/29Rhl3Y/T8SNjn7Dy2mdm6vjoGddZeS1nzPNbTIqg9MaNdJzxzE4rb1zLqbEuDoWxp3H4zm/vcFOvMwbpOGN6ZLYc8A51DZ7wppV3bq4ZjgkdfBk212yP0Wb8EisvUe9GXW1i78qb3qCBjre9kGvlfdYh/FCXV+hQl19rS/bpONMuFhqm1wJFT+hdDZY8ZKaPTKnzjo7/UWwPHxfebIaPk3GYKxR7foiIiChQ2PghIiKiQGHjh4iIiAIl6eb8qBJzF+aSleHn+EgtM27849gjrbxZ3R8Pe17PQbfq+IgP59nX9ltIiqw6+Tp8o81rvk/r+u0VOm48ZbmVl3LzOeLhhA5W8o6L39JxWsj3qk/2mK3xIzHPR53c0UoPe9mscz4t297G4IAytd1r8aVW3hGXz9dxKv5NeLeGWDqogZW3+NLHavz4M/eaz9lr37/ezvTO5Qn58Gw90dTR6vOyrbwFfcf4unb69Dq+jiPbxuvs7V2WnGH+H64sMbd/mXmeva0I8Es0ixVz7PkhIiKiQGHjh4iIiAIlIYe90vPNMIfUr2vlbTzd7EZZd6m9o++P15pl6k+f/pKOe+SE7tRqulmvXHm2lZP3mVnuWspdgBPC2rMbHfwg2F22ALD/c9PNX7ppWUTLFFQlZ5gu8xNHz7Hy+uWbYei5++zvVSPuMttG5OPral17x2VddfyXB1628k7JNnUfupzdO9RV6+xV1bp2stpVaO7OXpVhruHru+l4wZYmVl7m0No6Tt9qtp4oXDkLfpWe3sk8RuudlRxpaz/Z3Mm98An/1wu67X3Me2fOXfb2Lr+W7tFx/+F36Lj2z9V7nyYL9vwQERFRoLDxQ0RERIHCxg8REREFSkLO+Vl1y9E6/n5wzZdjVuaVIz6y0kM/OVHHU1fZ23vXG2/udJz7JsebY+WWwZN9Hdf7yaFWuumo4NyVO1aGPG1ue+C9bQRgz7X5YMcxVl7dj8ycq+ouKd/TZ6uOf5e7Lexxz21rZaWDNs/Hr6UHTE3cvuISKy/rWhNnrF5j5XlXrZfAH9XtWCt923Ov6riyW2R4l9IDQNvntuu4rCwVNyeIjuxr1um4LGTfge7Thui4aEJqz/PxYs8PERERBQobP0RERBQoCTns1XJKsY779epp5eVl+Ft+/tUU083asMdaK2/1yoY67tlxsZV3eQPT7Teqqz209V0n07F/u9xs5eVO5jBYvB3+xnorzU7xmts/tYWV7p4z05Oy7w5998YuOl54vr08urTYfg/6sXbYSVZ6Ssd/elL2cIh3qOu9i08IeaQVVb52qshbZj5LO7x0q5VXMNu8Q3KmzLby/A5nVWb/OebvYfPAXVae37vBX/PJtVa66Ptval6wANhwi/3emXuk2cX5gc32zuxtBy3Usd+7GGQ0b2alSxscqmMptT95y+YvQSJizw8REREFChs/REREFCgJOexVumipjotPtvOK4U8zeFb6PGjnFWGVju11DMDDx5hVDzcMy7HylvR4TsejR9s3R72j7CYdh3YhU9XtO9d0mbfOGhvHkqQ+ybSHr9SHZkftj9qFrrQzxz6zraWVM+84byr8MJf3Zpt7W9Sx84Zv0PG37eyVnpliVlt6b1YKAP8Zf4GOmy3jKr9ypcvMkN8Rd8Z2+G/jcWbH/W9PeKmSI21HTrxFx22HfWvl8ebS4aXl5em4zaXhd7Qf/0F3K91qnxnKTm9opoRsvNi+sam60Pz3HX3k61beydkHdLxb2VNTRmw4VceLhhxt5aXNmBe2nNHGnh8iIiIKFDZ+iIiIKFDY+CEiIqJAScg5P/HkXZbX9u+FVt60rrk6PjPHvqP8ukvNOGerKdEpWyo7cPbxVvry0e/r2DueHKr9pwN0XLQhuEuaa+LnO+zX/tt2j+o49A7pXltK8qz0+iGe5bViH1vrrE06/rLjBM/jh79CaM4Bz4SP0PlGLV9apeNILNOmqksvtHfWHt5voq/zQndxbjfG7EZccsDf1iYErP6z2d7l+1ahd0Ywb8jWr223cpY+abaGePdc894vCpkLmOZ5jDn77NlXnWb31fGzx46z8kYVmG1g5r5sbwlzX5ezdFxa/BtiiT0/REREFChs/BAREVGgcNirEqU//GilB7/fX8dL//AfK49LMGtmW8tMK33doaGbEDiWH9hnpetNzdZx6fbtoYeTD2MGPF2t84bXX2Slhw5b4PPM6n3nGunZmfbdR+3luvV+nRl6OMWAd6ir+2S7/q+obbYtCB3C7PC5Ga5u+qL93s9ayV2cq0N5hprTQsad08W859571x6W8tpeZv6TtZ12vZXX5C1TT3lv2MNXTWDulHDN3bdYeQsHmm1humbb733JsofWYok9P0RERBQobPwQERFRoLDxQ0RERIES3Tk/aek6TD/EXhabjPMzCr7yjKP+IX7lCJo1JXt0fPkjw6y8ghd5K4OaGjSrr5Ve2P3ZqF5vxEZzH4wRjeb6Pm/aiFN0XG8K5/gkglWXFuj4rXqTrLxMMZ//H+3OtvKajTX/ejI/5hyfSGg8x2wJUjYwZBaqMrOuykJmqM7eZ/6vDRt+m44LJ9nzevw6qdd8K+293oA1p9p523dU6xqRwJ4fIiIiChQ2foiIiChQojrsVdrd7Dj5t7HPW3kjL7lSx2quvWQ2UaQXtbbSw+4fH/ZYCZtDNbVgv+laL3iUw1yR1qrPPCt9Wt9bdbytjf2XnXXsFh0PLJph5T026QKE02qM2Tn9h4fM++reXt+FPafXkoutdM6U2WGPpdhZc7fZyfv96/6p4zLYOzV7h7pGDulv5dX6eE50ChdguV8u1fF1a3pYeSOamB3zD8/IsfKOzNyr4y1tzVBl7eOO8n3tH6+ureMXmzxs5a0sMZ8hv9xh/09N2zXP9zUijT0/REREFChs/BAREVGgsPFDREREgRLVOT8/9TbbYXerVWrlbeySr+OG/le7Rl1athmnXn9GIyvvvNxtYc+r90FO2DyqmHjuGryzRRwLQpY648wy8jqVHPc26lvpFgg/H8v77q/buKGOQ+/q/t0+830s61r7MXi39vhIy7O3KZl8rZnT0SSjVujh2sDp/XVc9B7n+ESbd/uYTde3s/KmTSrS8VW1V1l5h6SZOvz+Rs/d4G+0H997y4zQ5fJeB5R9y4rz7x+i4wYzEmeLCvb8EBERUaCw8UNERESBEtVhr7ZjPbs39rbznho+Rse3b7jZyst9s3o7S/qV3raNjpcObGDlnXaSWXb/dvPHEU7nOVdZ6WZvmfNKQw+mCqU3Mq/9wv7hX2tKftLZLJud1fllHYfe7bvPOzfpuHD119EuFoWx+YZuOm7bb4mV1yozM/TwChXdwKGueClbaNfZG+3NFI6nBl1k5eX3XqfjqUe94evx5+6z01d+OUDHh71lD3s1eD1xhrq82PNDREREgcLGDxEREQUKGz9EREQUKFGd85O2bZeOp+3JtfLOzNmt43//6zErb8JdJ4Z9zNe/7qLj+t+lhz2uuLOZeXNUu5+tvAFNP9RxZcvXlx3Yb6WvHvlnHTebuNjKS8a71BPFyu7meRX+/pM9h1jpdk//pmPOnYudjJaHW+nTB5p5lyMLws/BXH7AbEBw6/LL7MfEmgiVjiKp4VMhc3CeMuH56Fytx2yD8LepSVTs+SEiIqJAYeOHiIiIAiWqw14lK1fr+LGzzrHybh7cRMev/fFRK29k42/CPubIizx5F4U9zLejPre3kc2fbobnGn220cprsMx0F7JLPnae7OvdJ2F+3MpB/qXn51vpEaPH6jhTzHD14P/1t44rXBzdbS7ISG9odtpOf8ke4q9sqOuXErPOefiqS3Sc0ZPDXJQ82PNDREREgcLGDxEREQUKGz9EREQUKFGd8+Plnf8DAK2HmvQd026y8lZdaO4eO+uCR6y8UZtO0XFlc4M6ze6r453r7OW07f9drOMjfgyZQ6LM3Wo5rycxpO01y2lDb4dACaqgoZWsnbZXx5tLzfySptNiViIKsfx2c5ufBW3GVHKk7bIHhuq4/rOJeesCooNhzw8REREFChs/REREFCgxG/aqTNaH9t1/i8wGzOg7+OSQo82wVGW7UTbB4rB5HM5KDKWbzfBju4n20GdZnqml9j8tjVmZKDJKl62w0utLDtXxw7+aO4bnTubS9ljZeYm9c/70PqM8qVphz7t/Uycr3XDCQh1zGJqSFXt+iIiIKFDY+CEiIqJAYeOHiIiIAiUh5vxQMKl9Zpv8Nrd9HfY4ztFKfk//7mwdq23b41iSYCk7paOOH/zH01Zew/Tw83yOef5WHbceZ9/mp2zHitDDiZIOe36IiIgoUNj4ISIiokDhsBcRRV3JT6viXYRAylq7VceTtxxv5Z1YYHZnHlXcwcpr/epmHYduW0CUCtjzQ0RERIHCxg8REREFChs/REREFCic80NElKK8c61+CLkb0IXoUsmZP0alPESJgj0/REREFChs/BAREVGgiFLq4EcRERERpQj2/BAREVGgsPFDREREgcLGDxEREQUKGz9EREQUKGz8EBERUaCw8UNERESB8v9D4PCrWQgE7QAAAABJRU5ErkJggg==",
|
403 |
"text/plain": [
|
404 |
"<Figure size 720x720 with 5 Axes>"
|
405 |
]
|
|
|
426 |
},
|
427 |
{
|
428 |
"cell_type": "code",
|
429 |
+
"execution_count": 56,
|
430 |
"metadata": {
|
431 |
"tags": [
|
432 |
"exclude"
|
|
|
435 |
"outputs": [
|
436 |
{
|
437 |
"data": {
|
438 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAB+CAYAAADLN3DXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaPklEQVR4nO3dd3hVRfoH8O+bRopEOpEiCCSAiiKIgg1RdBXrsmtDEVQUxMK6Cuy6P8W26C6yrqhrxQa6CIrYXRFsKAKiSBMQpKj0SO9J5vfHOZk5c5/ccJLcfr6f58nzvJM55565d3Jv5k47opQCERERUVCkxbsARERERLHExg8REREFChs/REREFChs/BAREVGgsPFDREREgcLGDxEREQVK3Bs/IrJKRHrGuxyxIiL3iMj4eJcjWlifqYN1mVpYn6mDdVlzcW/8VIWI/ElEfhKR7SKyVkQeEZGMKF+zv4jMiOY1PNdqICJfikixiGwVkZkicnIsrh0PItJDRD4RkW0isipG14xZfbrXe0ZElopImYj0j9V140VEskRkiYj8EoNrxbQuPdftJyJKRAbE+tqxIiIfiMhOz89+EVkQ5WvG8rP21JDnt9Ot0z/E4vqxJiKdRORz93luEJEhUb5erD9n00XkAbddsENEvhOROpWdE9HGT7QbIgDeAdBJKZUP4GgAxwK4NcrXjKWdAK4F0BBAXQD/APBODF7XCsXgursAPA9gaJSvE0/fAxgM4Nt4FiKGf0NDAWyM0bViTkTqAvgrgEVxLkdU61Mpda5S6pDyHwBfAZgUzWvGklLqi5Dndz6cz98PY12WGHyBbwDneT0NoD6ANgA+iuY14+BeACcB6AYgH0BfAHsrO+GgjR+3e+2vIrJYRLaIyAsiku3mnS4iv4jIcBFZD+AFEUkTkb+IyAq3B2OiiNTzPF5fEVnt5v2tKs9OKbVCKbW1/KEAlMGpyIMSkdYiMt297mYRecXbMhSR5iIyWUQ2ucc8LiLtATwFoJvbYt7qHvup91tfaCtXRB4VkZ/dHqq5InKqz+e3Vym1VClV5j6/UjiNoHqVn+lfgtXnbKXUOAA/VeN5JHx9us/xCaXUNBzkjVgdiVSX7vlHALgKwINVPC8p6tL1IIAxADZX8byDSrT69DxOSwCnAhjn8/hkqs9y/QC8rpTaVc3zLQlWl38G8D+l1CtKqX1KqR1KqR98Po+Er0txvpD8CcD1SqnVyrFQKVWzxo/rSgC/A9AaQBGA//PkFcD559wCwA1wemIuBtAdQBMAWwA84RbySABPwmmVNYHTCm3meRKnlL9Q4YhIHxHZDufD51g4rVk/BM4HVxMA7QE0B3CP+5jpAN4FsBpASwBNAUxw/0AGAZjpfkOo4/NacwB0hPO6vApgUvkffgXPZ76I9An9HZx/lm8DeE4pFelv0glTnzWQNPUZZYlUl48BuBPAnio+h6SoSxE5AcDxcD7YoyWR6rPc1QC+UEqt9Hl8UtSn5/e5AP4I4CWf1/QrUeqyK4DfROQrEdkoIu+IyOE+n0My1GUHACUA/igi60VkmYjcdNCrKaUq/QGwCsAgT7oXgBVufDqA/QCyPfk/ADjTkz4MwAEAGQDudl+c8rw89/yeBytHBeUqBHA/gIKqnuuefzGA79y4G4BNADIqOK4/gBkhv/sUwIDKjgk5fguAY934HgDjfZQvG8AVAPpV5/klU30C6AlgVQ2fV6LX5wwA/VO1LgH8HsCHnmv/kkp1CSAdwDcAulV0nVSrz5ByLa/J324i1mfIOX0BrAQgqViXAJYB2AqgC5z/K2MAfJkqdQmgDwAFYCyAHADHuOU6q7Ln4nes8WdPvBpOK7DcJmV3L7UA8KaIlHl+VwqgsXuefiyl1C4RKfZZBotS6kcRWQTgPwB6H+x4EWkEp9JPBVAbTq/XFje7OYDVSqmS6pSlgmvdDmAAnOer4IxBNqjKY7iv6X9F5AcRmaeU+j4SZXMlXH1WVbLVZxTFvS5FJA/AP+F8wFdZktTlYADzlVIzI1GOSsS9Pr1E5BQ4vRSvV+GcZKhPr34AXlbuf9IISpS63APgTaXUHAAQkXsBbBaRQ5VS2yo7MUnqsryn+T6l1B4A80VkApzPo6nhTvI77NXcEx8OYK0nHfoH8zOAc5VSdTw/2UqpXwGs8z6W291Y32cZKpIBp0vRjwfdsh6jnAnTV8Hp0isv8+FS8cSzit4QuwDketIF5YE7TjkcwKUA6iqny2+b51pVlQmgVTXPDSdR67MqkrU+Iy0R6rIQTrf3F+4chskADnO7oFv6OD8Z6vJMAL93n9N6OJMrR4vI4z7OrYpEqE+vfgAmK6V2VuGcZKjP8sdoDqcn5mW/51RBotTl/JDrlcd+XqdkqMv5lVwzLL+Nn5tEpJk4E7DuBPBaJcc+BeDvItICAESkoYhc5Oa9DuB8d4wyC8B9VSgDRGSA2xItHwf9K4BpnvxPReSeMKfXhjObf6uINIW9wmg2nD+wh0QkT0SyxSwx3wCgmVvecvMA9BaRXBFpA+C6kOuUwO0OFJG74bRg/Ty/ruWvjYjkiMhwOC3/WX7Or4JEqc80d0w300lKtvd1Tvb6dJ9DlvscBUCmW5ZIrrJMhLpcCOfDuaP7MwDO69wR7jfWFKjL/nDmPJQ/x2/grDCp9kTiMBKhPuE+Xg6ASwC8WEFestdnub4AvlJKrajieX4kSl2+AKfh3lFEMgHcBWe4aat7raSuS7fuvgDwNxGpJc6E68vgzEcKy+8L+CqcpXE/uT8PVHLso3Am6n4kIjsAfA3gRLeQiwDc5D7eOjjdZ3o/EHH3XqjksU8GsEBEdgF43/2505PfHMCXYc69F0AnOK3J9+B8O4VbrlIAF8BZObbGLdNlbvZ0OMta14tI+QqPR+CMuW6AM0nuFc91/gfgAzjjrKvhTFz2dn9aRGSRiFzpJmvBmeRWDOBXON125yml1oY7v5oSpT5Pg9Nl+T6cb0Z7YC/BTPb6hPt89sDpKXjGjU8Ld341xL0ulVIlSqn15T8AfgNQ5qZL3cOSui6VUltDnuN+ANsPNmxQDXGvT4+L4dTJJxXkJXV9elyNyE90LpcQdamUmg7n/+R7cLahaANnnky5VKjLK+AMHRa75bxLOatsw5KDDXOKs/ncAKXUx5UeGGci0gzAJKVUt3iXJZGxPlMH6zK1sD5TB+sy8cVl87xoUEr9Amf2OaUA1mfqYF2mFtZn6ghyXSbV7S2IiIiIauqgw15EREREqYQ9P0RERBQobPwQERFRoPia8HxW2iUcG4uzqWWTIrKpHusy/iJVlwDrMxHwvZk6+N5MLZXVJ3t+iIiIKFBSZqk7ERERxV7GES10PGK6fRu4y9++RceFQ76OWZkOhj0/REREFChs/BAREVGgsPFDREREgcI5P0RERFRtW59M1/FxWXafSq3fErOPJTFLRURERBQlbPwQERFRoHDYi4iIiPw7oYOVHNN2rI43lO638lq+tVXHZVEtVNWw54eIiIgChY0fIiIiChQ2foiIiChQUmvOj2ccctk1OTp+85zHrMM6ZGXqOF3s9l/v5WfpeMddzay8tM++i0gxiYiIklXOqI1W+pgss9S9y0PDrLzG876KSZmqij0/REREFChs/BAREVGgJPWw17rbT7LS9w16Wcfn5W7T8du7GlrHzduXreO0kMV3r7X+UMfH3tLPymv+WfXLStF3+/JFVvrMnH06Dh3ePK/zOTouWbc+ugUjIkpym2/opuOPW4228qbtqavjJhOXW3ml0S1WtbHnh4iIiAKFjR8iIiIKFDZ+iIiIKFCSbs5PRkFjHY8YON7K887zOXL8zTouHLXMOq50c7GOJTPLyps4tYuOJx3/rJU3oM9tOs5/9euqFJti4ADSrXQZlIlVyMizUqDgKb6um53uWqLjomf32gfPXhCLIhElJO8cHwCYe8+TOl60X6y8Mef00nHphpXRLViEsOeHiIiIAoWNHyIiIgqUpBv2WnFjax1fmPe+lXf24t46LnzYLLfzDnOFUgfsO9AuXnOYjosK7SGx4gt36zj/VZ8FpqhKyzbbFqQj/FDWUeNuttKtiudGrUxBlV6/no53n9Daysv5zGxDULZ7N2Jp37lmKHtLD3toa0mPZ3T8SY9DrLxH2rSPbsESmLcuMybbn4OFh5jdfRfcbHbV//X0POu4Wt3M5+6szpH/wDzlL/Z7us64mRG/RtDIcUfp+OO77OXspcp81t74pyFWXs7y2dEtWBSw54eIiIgChY0fIiIiChQ2foiIiChQkm7OT+YuE/93R2MrL+eKnTqubJ6PV8mZna30hFOf0vEPB+zl0S0eZ1sx3tLbtrHS+c//puMzc8LPJclfYadD53pRzf3at52OZw991Mq7d6N5n809LrrvI+l8lJU+aeQsHY9oZM/1+mC32ZZ/xONXW3kFSMy7UUdDxmEFVrp4rJn/9Fmb/4Y97+Nxi3XcM2eHlZfm+W5dFnIboUjY3Xubla4zLuKXCISMpk10fM74GTo+JK2WdVzhmzfquOhd+32UjBuH8L85ERERBQobP0RERBQoSTfs1fRfZknda5NOtvJKN6/29Rhl3Y/T8SNjn7Dy2mdm6vjoGddZeS1nzPNbTIqg9MaNdJzxzE4rb1zLqbEuDoWxp3H4zm/vcFOvMwbpOGN6ZLYc8A51DZ7wppV3bq4ZjgkdfBk212yP0Wb8EisvUe9GXW1i78qb3qCBjre9kGvlfdYh/FCXV+hQl19rS/bpONMuFhqm1wJFT+hdDZY8ZKaPTKnzjo7/UWwPHxfebIaPk3GYKxR7foiIiChQ2PghIiKiQGHjh4iIiAIl6eb8qBJzF+aSleHn+EgtM27849gjrbxZ3R8Pe17PQbfq+IgP59nX9ltIiqw6+Tp8o81rvk/r+u0VOm48ZbmVl3LzOeLhhA5W8o6L39JxWsj3qk/2mK3xIzHPR53c0UoPe9mscz4t297G4IAytd1r8aVW3hGXz9dxKv5NeLeGWDqogZW3+NLHavz4M/eaz9lr37/ezvTO5Qn58Gw90dTR6vOyrbwFfcf4unb69Dq+jiPbxuvs7V2WnGH+H64sMbd/mXmeva0I8Es0ixVz7PkhIiKiQGHjh4iIiAIlIYe90vPNMIfUr2vlbTzd7EZZd6m9o++P15pl6k+f/pKOe+SE7tRqulmvXHm2lZP3mVnuWspdgBPC2rMbHfwg2F22ALD/c9PNX7ppWUTLFFQlZ5gu8xNHz7Hy+uWbYei5++zvVSPuMttG5OPral17x2VddfyXB1628k7JNnUfupzdO9RV6+xV1bp2stpVaO7OXpVhruHru+l4wZYmVl7m0No6Tt9qtp4oXDkLfpWe3sk8RuudlRxpaz/Z3Mm98An/1wu67X3Me2fOXfb2Lr+W7tFx/+F36Lj2z9V7nyYL9vwQERFRoLDxQ0RERIHCxg8REREFSkLO+Vl1y9E6/n5wzZdjVuaVIz6y0kM/OVHHU1fZ23vXG2/udJz7JsebY+WWwZN9Hdf7yaFWuumo4NyVO1aGPG1ue+C9bQRgz7X5YMcxVl7dj8ycq+ouKd/TZ6uOf5e7Lexxz21rZaWDNs/Hr6UHTE3cvuISKy/rWhNnrF5j5XlXrZfAH9XtWCt923Ov6riyW2R4l9IDQNvntuu4rCwVNyeIjuxr1um4LGTfge7Thui4aEJqz/PxYs8PERERBQobP0RERBQoCTns1XJKsY779epp5eVl+Ft+/tUU083asMdaK2/1yoY67tlxsZV3eQPT7Teqqz209V0n07F/u9xs5eVO5jBYvB3+xnorzU7xmts/tYWV7p4z05Oy7w5998YuOl54vr08urTYfg/6sXbYSVZ6Ssd/elL2cIh3qOu9i08IeaQVVb52qshbZj5LO7x0q5VXMNu8Q3KmzLby/A5nVWb/OebvYfPAXVae37vBX/PJtVa66Ptval6wANhwi/3emXuk2cX5gc32zuxtBy3Usd+7GGQ0b2alSxscqmMptT95y+YvQSJizw8REREFChs/REREFCgJOexVumipjotPtvOK4U8zeFb6PGjnFWGVju11DMDDx5hVDzcMy7HylvR4TsejR9s3R72j7CYdh3YhU9XtO9d0mbfOGhvHkqQ+ybSHr9SHZkftj9qFrrQzxz6zraWVM+84byr8MJf3Zpt7W9Sx84Zv0PG37eyVnpliVlt6b1YKAP8Zf4GOmy3jKr9ypcvMkN8Rd8Z2+G/jcWbH/W9PeKmSI21HTrxFx22HfWvl8ebS4aXl5em4zaXhd7Qf/0F3K91qnxnKTm9opoRsvNi+sam60Pz3HX3k61beydkHdLxb2VNTRmw4VceLhhxt5aXNmBe2nNHGnh8iIiIKFDZ+iIiIKFDY+CEiIqJAScg5P/HkXZbX9u+FVt60rrk6PjPHvqP8ukvNOGerKdEpWyo7cPbxVvry0e/r2DueHKr9pwN0XLQhuEuaa+LnO+zX/tt2j+o49A7pXltK8qz0+iGe5bViH1vrrE06/rLjBM/jh79CaM4Bz4SP0PlGLV9apeNILNOmqksvtHfWHt5voq/zQndxbjfG7EZccsDf1iYErP6z2d7l+1ahd0Ywb8jWr223cpY+abaGePdc894vCpkLmOZ5jDn77NlXnWb31fGzx46z8kYVmG1g5r5sbwlzX5ezdFxa/BtiiT0/REREFChs/BAREVGgcNirEqU//GilB7/fX8dL//AfK49LMGtmW8tMK33doaGbEDiWH9hnpetNzdZx6fbtoYeTD2MGPF2t84bXX2Slhw5b4PPM6n3nGunZmfbdR+3luvV+nRl6OMWAd6ir+2S7/q+obbYtCB3C7PC5Ga5u+qL93s9ayV2cq0N5hprTQsad08W859571x6W8tpeZv6TtZ12vZXX5C1TT3lv2MNXTWDulHDN3bdYeQsHmm1humbb733JsofWYok9P0RERBQobPwQERFRoLDxQ0RERIES3Tk/aek6TD/EXhabjPMzCr7yjKP+IX7lCJo1JXt0fPkjw6y8ghd5K4OaGjSrr5Ve2P3ZqF5vxEZzH4wRjeb6Pm/aiFN0XG8K5/gkglWXFuj4rXqTrLxMMZ//H+3OtvKajTX/ejI/5hyfSGg8x2wJUjYwZBaqMrOuykJmqM7eZ/6vDRt+m44LJ9nzevw6qdd8K+293oA1p9p523dU6xqRwJ4fIiIiChQ2foiIiChQojrsVdrd7Dj5t7HPW3kjL7lSx2quvWQ2UaQXtbbSw+4fH/ZYCZtDNbVgv+laL3iUw1yR1qrPPCt9Wt9bdbytjf2XnXXsFh0PLJph5T026QKE02qM2Tn9h4fM++reXt+FPafXkoutdM6U2WGPpdhZc7fZyfv96/6p4zLYOzV7h7pGDulv5dX6eE50ChdguV8u1fF1a3pYeSOamB3zD8/IsfKOzNyr4y1tzVBl7eOO8n3tH6+ureMXmzxs5a0sMZ8hv9xh/09N2zXP9zUijT0/REREFChs/BAREVGgsPFDREREgRLVOT8/9TbbYXerVWrlbeySr+OG/le7Rl1athmnXn9GIyvvvNxtYc+r90FO2DyqmHjuGryzRRwLQpY648wy8jqVHPc26lvpFgg/H8v77q/buKGOQ+/q/t0+830s61r7MXi39vhIy7O3KZl8rZnT0SSjVujh2sDp/XVc9B7n+ESbd/uYTde3s/KmTSrS8VW1V1l5h6SZOvz+Rs/d4G+0H997y4zQ5fJeB5R9y4rz7x+i4wYzEmeLCvb8EBERUaCw8UNERESBEtVhr7ZjPbs39rbznho+Rse3b7jZyst9s3o7S/qV3raNjpcObGDlnXaSWXb/dvPHEU7nOVdZ6WZvmfNKQw+mCqU3Mq/9wv7hX2tKftLZLJud1fllHYfe7bvPOzfpuHD119EuFoWx+YZuOm7bb4mV1yozM/TwChXdwKGueClbaNfZG+3NFI6nBl1k5eX3XqfjqUe94evx5+6z01d+OUDHh71lD3s1eD1xhrq82PNDREREgcLGDxEREQUKGz9EREQUKFGd85O2bZeOp+3JtfLOzNmt43//6zErb8JdJ4Z9zNe/7qLj+t+lhz2uuLOZeXNUu5+tvAFNP9RxZcvXlx3Yb6WvHvlnHTebuNjKS8a71BPFyu7meRX+/pM9h1jpdk//pmPOnYudjJaHW+nTB5p5lyMLws/BXH7AbEBw6/LL7MfEmgiVjiKp4VMhc3CeMuH56Fytx2yD8LepSVTs+SEiIqJAYeOHiIiIAiWqw14lK1fr+LGzzrHybh7cRMev/fFRK29k42/CPubIizx5F4U9zLejPre3kc2fbobnGn220cprsMx0F7JLPnae7OvdJ2F+3MpB/qXn51vpEaPH6jhTzHD14P/1t44rXBzdbS7ISG9odtpOf8ke4q9sqOuXErPOefiqS3Sc0ZPDXJQ82PNDREREgcLGDxEREQUKGz9EREQUKFGd8+Plnf8DAK2HmvQd026y8lZdaO4eO+uCR6y8UZtO0XFlc4M6ze6r453r7OW07f9drOMjfgyZQ6LM3Wo5rycxpO01y2lDb4dACaqgoZWsnbZXx5tLzfySptNiViIKsfx2c5ufBW3GVHKk7bIHhuq4/rOJeesCooNhzw8REREFChs/REREFCgxG/aqTNaH9t1/i8wGzOg7+OSQo82wVGW7UTbB4rB5HM5KDKWbzfBju4n20GdZnqml9j8tjVmZKDJKl62w0utLDtXxw7+aO4bnTubS9ljZeYm9c/70PqM8qVphz7t/Uycr3XDCQh1zGJqSFXt+iIiIKFDY+CEiIqJAYeOHiIiIAiUh5vxQMKl9Zpv8Nrd9HfY4ztFKfk//7mwdq23b41iSYCk7paOOH/zH01Zew/Tw83yOef5WHbceZ9/mp2zHitDDiZIOe36IiIgoUNj4ISIiokDhsBcRRV3JT6viXYRAylq7VceTtxxv5Z1YYHZnHlXcwcpr/epmHYduW0CUCtjzQ0RERIHCxg8REREFChs/REREFCic80NElKK8c61+CLkb0IXoUsmZP0alPESJgj0/REREFChs/BAREVGgiFLq4EcRERERpQj2/BAREVGgsPFDREREgcLGDxEREQUKGz9EREQUKGz8EBERUaCw8UNERESB8v9D4PCrWQgE7QAAAABJRU5ErkJggg==",
|
439 |
"text/plain": [
|
440 |
"<Figure size 720x720 with 5 Axes>"
|
441 |
]
|
|
|
460 |
},
|
461 |
{
|
462 |
"cell_type": "code",
|
463 |
+
"execution_count": 57,
|
464 |
"metadata": {},
|
465 |
"outputs": [],
|
466 |
"source": [
|
|
|
476 |
},
|
477 |
{
|
478 |
"cell_type": "code",
|
479 |
+
"execution_count": 58,
|
480 |
"metadata": {
|
481 |
"tags": [
|
482 |
"exclude"
|
|
|
487 |
"name": "stdout",
|
488 |
"output_type": "stream",
|
489 |
"text": [
|
490 |
+
"tensor(3)\n"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"name": "stderr",
|
495 |
+
"output_type": "stream",
|
496 |
+
"text": [
|
497 |
+
"[W NNPACK.cpp:64] Could not initialize NNPACK! Reason: Unsupported hardware.\n"
|
498 |
]
|
499 |
},
|
500 |
{
|
501 |
"data": {
|
502 |
"text/plain": [
|
503 |
+
"[{'digit': 0, 'prob': '0.00%', 'logits': tensor(-5.5980)},\n",
|
504 |
+
" {'digit': 1, 'prob': '0.00%', 'logits': tensor(-0.4972)},\n",
|
505 |
+
" {'digit': 2, 'prob': '0.02%', 'logits': tensor(1.2516)},\n",
|
506 |
+
" {'digit': 3, 'prob': '99.95%', 'logits': tensor(9.9263)},\n",
|
507 |
+
" {'digit': 4, 'prob': '0.00%', 'logits': tensor(-5.5094)},\n",
|
508 |
+
" {'digit': 5, 'prob': '0.01%', 'logits': tensor(0.2367)},\n",
|
509 |
+
" {'digit': 6, 'prob': '0.00%', 'logits': tensor(-9.4633)},\n",
|
510 |
+
" {'digit': 7, 'prob': '0.00%', 'logits': tensor(-2.4315)},\n",
|
511 |
+
" {'digit': 8, 'prob': '0.02%', 'logits': tensor(1.4733)},\n",
|
512 |
+
" {'digit': 9, 'prob': '0.00%', 'logits': tensor(-0.0205)}]"
|
513 |
]
|
514 |
},
|
515 |
+
"execution_count": 58,
|
516 |
"metadata": {},
|
517 |
"output_type": "execute_result"
|
518 |
}
|
|
|
536 |
},
|
537 |
{
|
538 |
"cell_type": "code",
|
539 |
+
"execution_count": 59,
|
540 |
"metadata": {
|
541 |
"tags": [
|
542 |
"exclude"
|
|
|
547 |
"name": "stdout",
|
548 |
"output_type": "stream",
|
549 |
"text": [
|
550 |
+
"[NbConvertApp] Converting notebook mnist_classifier.ipynb to script\n"
|
|
|
551 |
]
|
552 |
}
|
553 |
],
|