Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -46,23 +46,26 @@ st.markdown(
|
|
46 |
)
|
47 |
st.sidebar.markdown('Using transformer model')
|
48 |
|
49 |
-
## Loading
|
|
|
50 |
df = pd.read_csv('shpi25nov.csv')
|
51 |
|
52 |
-
#Loading in Admission chief Complaint and diagnosis
|
53 |
df2 = pd.read_csv('cohort_cc_adm_diag.csv')
|
54 |
|
55 |
-
#Loading in Dischare History
|
56 |
df3 = pd.read_csv('cohort_past_history_12072022.csv')
|
57 |
|
58 |
-
#combining both data into one
|
59 |
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
|
60 |
|
|
|
|
|
|
|
|
|
61 |
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
62 |
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
63 |
|
64 |
-
del df2
|
65 |
-
|
66 |
#Renaming column
|
67 |
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
68 |
'HADM_ID':'Admission_ID',
|
@@ -70,24 +73,25 @@ df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
|
70 |
'hpi_reference_summary':'Reference_text'}, inplace = True)
|
71 |
df3.rename(columns={'SUBJECT_ID':'Patient_ID'}, inplace = True)
|
72 |
|
73 |
-
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
|
74 |
-
|
75 |
#Filter selection
|
76 |
st.sidebar.header("Search for Patient:")
|
77 |
|
|
|
78 |
patientid = df['Patient_ID']
|
79 |
-
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
80 |
-
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
81 |
-
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
|
82 |
-
pastHistoryEpid = df3['HADM_ID'].loc[df3['Patient_ID'] == patient]
|
83 |
|
84 |
|
85 |
# List of Model available
|
86 |
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
87 |
|
|
|
88 |
col3,col4 = st.columns(2)
|
89 |
patientid = col3.write(f"Patient ID: {patient} ")
|
90 |
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
|
|
|
91 |
runtext = ''
|
92 |
inputNote ='Input note here:'
|
93 |
# Query out relevant Clinical notes
|
@@ -147,6 +151,8 @@ with st.container():
|
|
147 |
#st.date_input('Select Admission Date') # To replace with a dropdown filter instead
|
148 |
#st.selectbox('Past Episodes',pastHistoryEp)
|
149 |
pastHistory = st.selectbox(' ', pastHistoryEpid)
|
|
|
|
|
150 |
|
151 |
##========= END on Past History Tab =========
|
152 |
|
@@ -302,7 +308,11 @@ with col1:
|
|
302 |
st.text_area('Reference text', str(reference_text), height=150)
|
303 |
else:
|
304 |
with st.expander('Full Discharge Summary'):
|
305 |
-
|
|
|
|
|
|
|
|
|
306 |
##====== Storing the Diseases/Text
|
307 |
table= {"Entity":[], "Class":[]}
|
308 |
ent_bc = {}
|
|
|
46 |
)
|
47 |
st.sidebar.markdown('Using transformer model')
|
48 |
|
49 |
+
## ======== Loading dataset ========
|
50 |
+
## Loading in Admission Dataset
|
51 |
df = pd.read_csv('shpi25nov.csv')
|
52 |
|
53 |
+
# Loading in Admission chief Complaint and diagnosis
|
54 |
df2 = pd.read_csv('cohort_cc_adm_diag.csv')
|
55 |
|
56 |
+
# Loading in Dischare History
|
57 |
df3 = pd.read_csv('cohort_past_history_12072022.csv')
|
58 |
|
59 |
+
# combining both data into one
|
60 |
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
|
61 |
|
62 |
+
# Deleting admission chief complaint and diagnosis after combining
|
63 |
+
del df2
|
64 |
+
|
65 |
+
# Remove decimal point from Admission ID
|
66 |
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
67 |
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
68 |
|
|
|
|
|
69 |
#Renaming column
|
70 |
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
71 |
'HADM_ID':'Admission_ID',
|
|
|
73 |
'hpi_reference_summary':'Reference_text'}, inplace = True)
|
74 |
df3.rename(columns={'SUBJECT_ID':'Patient_ID'}, inplace = True)
|
75 |
|
|
|
|
|
76 |
#Filter selection
|
77 |
st.sidebar.header("Search for Patient:")
|
78 |
|
79 |
+
# ===== Initial filter for patient and admission id =====
|
80 |
patientid = df['Patient_ID']
|
81 |
+
patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient
|
82 |
+
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient
|
83 |
+
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
|
84 |
+
pastHistoryEpid = df3['HADM_ID'].loc[df3['Patient_ID'] == patient] #Filter list of available Past History (for History tab)
|
85 |
|
86 |
|
87 |
# List of Model available
|
88 |
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
89 |
|
90 |
+
# ===== to display selected patient and admission id on main page
|
91 |
col3,col4 = st.columns(2)
|
92 |
patientid = col3.write(f"Patient ID: {patient} ")
|
93 |
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
|
94 |
+
|
95 |
runtext = ''
|
96 |
inputNote ='Input note here:'
|
97 |
# Query out relevant Clinical notes
|
|
|
151 |
#st.date_input('Select Admission Date') # To replace with a dropdown filter instead
|
152 |
#st.selectbox('Past Episodes',pastHistoryEp)
|
153 |
pastHistory = st.selectbox(' ', pastHistoryEpid)
|
154 |
+
|
155 |
+
|
156 |
|
157 |
##========= END on Past History Tab =========
|
158 |
|
|
|
308 |
st.text_area('Reference text', str(reference_text), height=150)
|
309 |
else:
|
310 |
with st.expander('Full Discharge Summary'):
|
311 |
+
historyAdmission = df.query(
|
312 |
+
"Patient_ID == @patient & Admission_ID == @pastHistory"
|
313 |
+
)
|
314 |
+
fulldischargesummary = historyAdmission['TEXT'].values
|
315 |
+
st.write( str(fulldischargesummary))
|
316 |
##====== Storing the Diseases/Text
|
317 |
table= {"Entity":[], "Class":[]}
|
318 |
ent_bc = {}
|