Spaces:
Runtime error
Runtime error
import logging | |
import re | |
import cv2 | |
import lmdb | |
import six | |
from fastai.vision import * | |
from torchvision import transforms | |
from transforms import CVColorJitter, CVDeterioration, CVGeometry | |
from utils import CharsetMapper, onehot | |
class ImageDataset(Dataset): | |
"`ImageDataset` read data from LMDB database." | |
def __init__(self, | |
path:PathOrStr, | |
is_training:bool=True, | |
img_h:int=32, | |
img_w:int=100, | |
max_length:int=25, | |
check_length:bool=True, | |
case_sensitive:bool=False, | |
charset_path:str='data/charset_36.txt', | |
convert_mode:str='RGB', | |
data_aug:bool=True, | |
deteriorate_ratio:float=0., | |
multiscales:bool=True, | |
one_hot_y:bool=True, | |
return_idx:bool=False, | |
return_raw:bool=False, | |
**kwargs): | |
self.path, self.name = Path(path), Path(path).name | |
assert self.path.is_dir() and self.path.exists(), f"{path} is not a valid directory." | |
self.convert_mode, self.check_length = convert_mode, check_length | |
self.img_h, self.img_w = img_h, img_w | |
self.max_length, self.one_hot_y = max_length, one_hot_y | |
self.return_idx, self.return_raw = return_idx, return_raw | |
self.case_sensitive, self.is_training = case_sensitive, is_training | |
self.data_aug, self.multiscales = data_aug, multiscales | |
self.charset = CharsetMapper(charset_path, max_length=max_length+1) | |
self.c = self.charset.num_classes | |
self.env = lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False) | |
assert self.env, f'Cannot open LMDB dataset from {path}.' | |
with self.env.begin(write=False) as txn: | |
self.length = int(txn.get('num-samples'.encode())) | |
if self.is_training and self.data_aug: | |
self.augment_tfs = transforms.Compose([ | |
CVGeometry(degrees=45, translate=(0.0, 0.0), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5), | |
CVDeterioration(var=20, degrees=6, factor=4, p=0.25), | |
CVColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.25) | |
]) | |
self.totensor = transforms.ToTensor() | |
def __len__(self): return self.length | |
def _next_image(self, index): | |
next_index = random.randint(0, len(self) - 1) | |
return self.get(next_index) | |
def _check_image(self, x, pixels=6): | |
if x.size[0] <= pixels or x.size[1] <= pixels: return False | |
else: return True | |
def resize_multiscales(self, img, borderType=cv2.BORDER_CONSTANT): | |
def _resize_ratio(img, ratio, fix_h=True): | |
if ratio * self.img_w < self.img_h: | |
if fix_h: trg_h = self.img_h | |
else: trg_h = int(ratio * self.img_w) | |
trg_w = self.img_w | |
else: trg_h, trg_w = self.img_h, int(self.img_h / ratio) | |
img = cv2.resize(img, (trg_w, trg_h)) | |
pad_h, pad_w = (self.img_h - trg_h) / 2, (self.img_w - trg_w) / 2 | |
top, bottom = math.ceil(pad_h), math.floor(pad_h) | |
left, right = math.ceil(pad_w), math.floor(pad_w) | |
img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType) | |
return img | |
if self.is_training: | |
if random.random() < 0.5: | |
base, maxh, maxw = self.img_h, self.img_h, self.img_w | |
h, w = random.randint(base, maxh), random.randint(base, maxw) | |
return _resize_ratio(img, h/w) | |
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio | |
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio | |
def resize(self, img): | |
if self.multiscales: return self.resize_multiscales(img, cv2.BORDER_REPLICATE) | |
else: return cv2.resize(img, (self.img_w, self.img_h)) | |
def get(self, idx): | |
with self.env.begin(write=False) as txn: | |
image_key, label_key = f'image-{idx+1:09d}', f'label-{idx+1:09d}' | |
try: | |
label = str(txn.get(label_key.encode()), 'utf-8') # label | |
label = re.sub('[^0-9a-zA-Z]+', '', label) | |
if self.check_length and self.max_length > 0: | |
if len(label) > self.max_length or len(label) <= 0: | |
#logging.info(f'Long or short text image is found: {self.name}, {idx}, {label}, {len(label)}') | |
return self._next_image(idx) | |
label = label[:self.max_length] | |
imgbuf = txn.get(image_key.encode()) # image | |
buf = six.BytesIO() | |
buf.write(imgbuf) | |
buf.seek(0) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin | |
image = PIL.Image.open(buf).convert(self.convert_mode) | |
if self.is_training and not self._check_image(image): | |
#logging.info(f'Invalid image is found: {self.name}, {idx}, {label}, {len(label)}') | |
return self._next_image(idx) | |
except: | |
import traceback | |
traceback.print_exc() | |
logging.info(f'Corrupted image is found: {self.name}, {idx}, {label}, {len(label)}') | |
return self._next_image(idx) | |
return image, label, idx | |
def _process_training(self, image): | |
if self.data_aug: image = self.augment_tfs(image) | |
image = self.resize(np.array(image)) | |
return image | |
def _process_test(self, image): | |
return self.resize(np.array(image)) # TODO:move is_training to here | |
def __getitem__(self, idx): | |
image, text, idx_new = self.get(idx) | |
if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.' | |
if self.is_training: image = self._process_training(image) | |
else: image = self._process_test(image) | |
if self.return_raw: return image, text | |
image = self.totensor(image) | |
length = tensor(len(text) + 1).to(dtype=torch.long) # one for end token | |
label = self.charset.get_labels(text, case_sensitive=self.case_sensitive) | |
label = tensor(label).to(dtype=torch.long) | |
if self.one_hot_y: label = onehot(label, self.charset.num_classes) | |
if self.return_idx: y = [label, length, idx_new] | |
else: y = [label, length] | |
return image, y | |
class TextDataset(Dataset): | |
def __init__(self, | |
path:PathOrStr, | |
delimiter:str='\t', | |
max_length:int=25, | |
charset_path:str='data/charset_36.txt', | |
case_sensitive=False, | |
one_hot_x=True, | |
one_hot_y=True, | |
is_training=True, | |
smooth_label=False, | |
smooth_factor=0.2, | |
use_sm=False, | |
**kwargs): | |
self.path = Path(path) | |
self.case_sensitive, self.use_sm = case_sensitive, use_sm | |
self.smooth_factor, self.smooth_label = smooth_factor, smooth_label | |
self.charset = CharsetMapper(charset_path, max_length=max_length+1) | |
self.one_hot_x, self.one_hot_y, self.is_training = one_hot_x, one_hot_y, is_training | |
if self.is_training and self.use_sm: self.sm = SpellingMutation(charset=self.charset) | |
dtype = {'inp': str, 'gt': str} | |
self.df = pd.read_csv(self.path, dtype=dtype, delimiter=delimiter, na_filter=False) | |
self.inp_col, self.gt_col = 0, 1 | |
def __len__(self): return len(self.df) | |
def __getitem__(self, idx): | |
text_x = self.df.iloc[idx, self.inp_col] | |
text_x = re.sub('[^0-9a-zA-Z]+', '', text_x) | |
if not self.case_sensitive: text_x = text_x.lower() | |
if self.is_training and self.use_sm: text_x = self.sm(text_x) | |
length_x = tensor(len(text_x) + 1).to(dtype=torch.long) # one for end token | |
label_x = self.charset.get_labels(text_x, case_sensitive=self.case_sensitive) | |
label_x = tensor(label_x) | |
if self.one_hot_x: | |
label_x = onehot(label_x, self.charset.num_classes) | |
if self.is_training and self.smooth_label: | |
label_x = torch.stack([self.prob_smooth_label(l) for l in label_x]) | |
x = [label_x, length_x] | |
text_y = self.df.iloc[idx, self.gt_col] | |
text_y = re.sub('[^0-9a-zA-Z]+', '', text_y) | |
if not self.case_sensitive: text_y = text_y.lower() | |
length_y = tensor(len(text_y) + 1).to(dtype=torch.long) # one for end token | |
label_y = self.charset.get_labels(text_y, case_sensitive=self.case_sensitive) | |
label_y = tensor(label_y) | |
if self.one_hot_y: label_y = onehot(label_y, self.charset.num_classes) | |
y = [label_y, length_y] | |
return x, y | |
def prob_smooth_label(self, one_hot): | |
one_hot = one_hot.float() | |
delta = torch.rand([]) * self.smooth_factor | |
num_classes = len(one_hot) | |
noise = torch.rand(num_classes) | |
noise = noise / noise.sum() * delta | |
one_hot = one_hot * (1 - delta) + noise | |
return one_hot | |
class SpellingMutation(object): | |
def __init__(self, pn0=0.7, pn1=0.85, pn2=0.95, pt0=0.7, pt1=0.85, charset=None): | |
""" | |
Args: | |
pn0: the prob of not modifying characters is (pn0) | |
pn1: the prob of modifying one characters is (pn1 - pn0) | |
pn2: the prob of modifying two characters is (pn2 - pn1), | |
and three (1 - pn2) | |
pt0: the prob of replacing operation is pt0. | |
pt1: the prob of inserting operation is (pt1 - pt0), | |
and deleting operation is (1 - pt1) | |
""" | |
super().__init__() | |
self.pn0, self.pn1, self.pn2 = pn0, pn1, pn2 | |
self.pt0, self.pt1 = pt0, pt1 | |
self.charset = charset | |
logging.info(f'the probs: pn0={self.pn0}, pn1={self.pn1} ' + | |
f'pn2={self.pn2}, pt0={self.pt0}, pt1={self.pt1}') | |
def is_digit(self, text, ratio=0.5): | |
length = max(len(text), 1) | |
digit_num = sum([t in self.charset.digits for t in text]) | |
if digit_num / length < ratio: return False | |
return True | |
def is_unk_char(self, char): | |
# return char == self.charset.unk_char | |
return (char not in self.charset.digits) and (char not in self.charset.alphabets) | |
def get_num_to_modify(self, length): | |
prob = random.random() | |
if prob < self.pn0: num_to_modify = 0 | |
elif prob < self.pn1: num_to_modify = 1 | |
elif prob < self.pn2: num_to_modify = 2 | |
else: num_to_modify = 3 | |
if length <= 1: num_to_modify = 0 | |
elif length >= 2 and length <= 4: num_to_modify = min(num_to_modify, 1) | |
else: num_to_modify = min(num_to_modify, length // 2) # smaller than length // 2 | |
return num_to_modify | |
def __call__(self, text, debug=False): | |
if self.is_digit(text): return text | |
length = len(text) | |
num_to_modify = self.get_num_to_modify(length) | |
if num_to_modify <= 0: return text | |
chars = [] | |
index = np.arange(0, length) | |
random.shuffle(index) | |
index = index[: num_to_modify] | |
if debug: self.index = index | |
for i, t in enumerate(text): | |
if i not in index: chars.append(t) | |
elif self.is_unk_char(t): chars.append(t) | |
else: | |
prob = random.random() | |
if prob < self.pt0: # replace | |
chars.append(random.choice(self.charset.alphabets)) | |
elif prob < self.pt1: # insert | |
chars.append(random.choice(self.charset.alphabets)) | |
chars.append(t) | |
else: # delete | |
continue | |
new_text = ''.join(chars[: self.charset.max_length-1]) | |
return new_text if len(new_text) >= 1 else text |