Spaces:
Runtime error
Runtime error
import logging | |
import torch.nn as nn | |
from fastai.vision import * | |
from modules.attention import * | |
from modules.backbone import ResTranformer | |
from modules.model import Model | |
from modules.resnet import resnet45 | |
class BaseVision(Model): | |
def __init__(self, config): | |
super().__init__(config) | |
self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0) | |
self.out_channels = ifnone(config.model_vision_d_model, 512) | |
if config.model_vision_backbone == 'transformer': | |
self.backbone = ResTranformer(config) | |
else: self.backbone = resnet45() | |
if config.model_vision_attention == 'position': | |
mode = ifnone(config.model_vision_attention_mode, 'nearest') | |
self.attention = PositionAttention( | |
max_length=config.dataset_max_length + 1, # additional stop token | |
mode=mode, | |
) | |
elif config.model_vision_attention == 'attention': | |
self.attention = Attention( | |
max_length=config.dataset_max_length + 1, # additional stop token | |
n_feature=8*32, | |
) | |
else: | |
raise Exception(f'{config.model_vision_attention} is not valid.') | |
self.cls = nn.Linear(self.out_channels, self.charset.num_classes) | |
if config.model_vision_checkpoint is not None: | |
logging.info(f'Read vision model from {config.model_vision_checkpoint}.') | |
self.load(config.model_vision_checkpoint) | |
def forward(self, images, *args): | |
features = self.backbone(images) # (N, E, H, W) | |
attn_vecs, attn_scores = self.attention(features) # (N, T, E), (N, T, H, W) | |
logits = self.cls(attn_vecs) # (N, T, C) | |
pt_lengths = self._get_length(logits) | |
return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths, | |
'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision'} | |