Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# from transformers.utils import logging | |
# logging.set_verbosity_error() | |
# import warnings | |
# warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") | |
# from transformers import BlipForQuestionAnswering | |
# from transformers import AutoProcessor | |
# def qa(image, question): | |
# model = BlipForQuestionAnswering.from_pretrained( | |
# "./models/Salesforce/blip-vqa-base") | |
# processor = AutoProcessor.from_pretrained( | |
# "./models/Salesforce/blip-vqa-base") | |
# inputs = processor(image, question, return_tensors="pt") | |
# out = model.generate(image, question) | |
# result = processor.decode(out[0], skip_special_tokens=True) | |
# return result | |
# # def greet(name): | |
# # return "Hello " + name + "!!" | |
# iface = gr.Interface(fn=qa, inputs=["image","text"], outputs="textbox") | |
# iface.launch() | |
import gradio as gr | |
from transformers.utils import logging | |
from transformers import BlipForQuestionAnswering, AutoProcessor | |
logging.set_verbosity_error() | |
import warnings | |
warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") | |
def qa(image, question): | |
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
inputs = processor(image=image, question=question, return_tensors="pt") | |
out = model.generate(**inputs) | |
result = processor.decode(out[0], skip_special_tokens=True) | |
return result | |
iface = gr.Interface(fn=qa, inputs=["image", "text"], outputs="textbox") | |
iface.launch() | |