captain-awesome
commited on
Commit
•
7d9fec0
1
Parent(s):
adbfb07
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,30 @@ from langchain_core.messages import AIMessage, HumanMessage
|
|
3 |
from langchain_community.document_loaders import WebBaseLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
7 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
9 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
10 |
-
from
|
|
|
|
|
|
|
11 |
|
12 |
-
load_dotenv()
|
13 |
|
14 |
def get_response(user_input):
|
15 |
return "I dont know"
|
16 |
|
17 |
def get_vector_store_from_url(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
loader = WebBaseLoader(url)
|
19 |
document = loader.load()
|
20 |
|
@@ -23,13 +35,24 @@ def get_vector_store_from_url(url):
|
|
23 |
document_chunks = text_splitter.split_documents(document)
|
24 |
|
25 |
# create a vectorstore from the chunks
|
26 |
-
vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
|
|
|
27 |
|
28 |
return vector_store
|
29 |
|
30 |
|
31 |
def get_context_retriever_chain(vector_store):
|
32 |
-
llm = ChatOpenAI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
retriever = vector_store.as_retriever()
|
35 |
|
|
|
3 |
from langchain_community.document_loaders import WebBaseLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
7 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
8 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
9 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
10 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
11 |
+
from langchain_community.llms import CTransformers
|
12 |
+
from ctransformers import AutoModelForCausalLM
|
13 |
+
# from dotenv import load_dotenv
|
14 |
|
15 |
+
# load_dotenv()
|
16 |
|
17 |
def get_response(user_input):
|
18 |
return "I dont know"
|
19 |
|
20 |
def get_vector_store_from_url(url):
|
21 |
+
model_name = "BAAI/bge-large-en"
|
22 |
+
model_kwargs = {'device': 'cpu'}
|
23 |
+
encode_kwargs = {'normalize_embeddings': False}
|
24 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
25 |
+
model_name=model_name,
|
26 |
+
model_kwargs=model_kwargs,
|
27 |
+
encode_kwargs=encode_kwargs
|
28 |
+
)
|
29 |
+
|
30 |
loader = WebBaseLoader(url)
|
31 |
document = loader.load()
|
32 |
|
|
|
35 |
document_chunks = text_splitter.split_documents(document)
|
36 |
|
37 |
# create a vectorstore from the chunks
|
38 |
+
# vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
|
39 |
+
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
40 |
|
41 |
return vector_store
|
42 |
|
43 |
|
44 |
def get_context_retriever_chain(vector_store):
|
45 |
+
# llm = ChatOpenAI()
|
46 |
+
llm = CTransformers(
|
47 |
+
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
48 |
+
model= "TheBloke/Llama-2-7B-Chat-GGUF",
|
49 |
+
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
|
50 |
+
model_type="llama",
|
51 |
+
max_new_tokens = 300,
|
52 |
+
temperature = 0.3,
|
53 |
+
lib="avx2", # for CPU
|
54 |
+
)
|
55 |
+
|
56 |
|
57 |
retriever = vector_store.as_retriever()
|
58 |
|