Spaces:
Build error
Build error
fix merge conflict
Browse files- app.py +50 -19
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,34 +1,65 @@
|
|
1 |
-
import cv2
|
2 |
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
import spaces
|
5 |
-
import supervision as sv
|
6 |
-
from autodistill.detection import CaptionOntology
|
7 |
-
from autodistill.utils import plot
|
8 |
from autodistill_grounded_sam_2 import GroundedSAM2
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@spaces.GPU
|
12 |
-
def greet(image):
|
13 |
-
|
14 |
-
ontology=CaptionOntology({"container id": "container number", "logo": "logo"}),
|
15 |
-
model="Grounding DINO",
|
16 |
-
grounding_dino_box_threshold=0.25,
|
17 |
-
)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
mask_annotator = sv.BoxAnnotator()
|
26 |
|
27 |
-
annotated_image = mask_annotator.annotate(
|
|
|
|
|
28 |
|
29 |
return annotated_image
|
30 |
|
31 |
-
|
32 |
-
demo = gr.Interface(fn=greet, inputs="image", outputs="image")
|
33 |
demo.launch()
|
34 |
-
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import spaces
|
|
|
|
|
|
|
3 |
from autodistill_grounded_sam_2 import GroundedSAM2
|
4 |
+
from autodistill_grounded_sam_2.helpers import combine_detections
|
5 |
+
from autodistill.helpers import load_image
|
6 |
+
import torch
|
7 |
+
from autodistill.detection import CaptionOntology
|
8 |
+
import supervision as sv
|
9 |
+
import nupmy as np
|
10 |
|
11 |
+
base_model = GroundedSAM2(
|
12 |
+
ontology=CaptionOntology({}),
|
13 |
+
model = "Grounding DINO",
|
14 |
+
grounding_dino_box_threshold=0.25
|
15 |
+
)
|
16 |
|
17 |
@spaces.GPU
|
18 |
+
def greet(image, prompt):
|
19 |
+
image = load_image(input, return_format="cv2")
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
if base_model.model == "Florence 2":
|
22 |
+
detections = base_model.florence_2_predictor.predict(image)
|
23 |
+
elif base_model.model == "Grounding DINO":
|
24 |
+
# GroundingDINO predictions
|
25 |
+
detections_list = []
|
26 |
+
|
27 |
+
for i, description in enumerate(prompt.split(",")):
|
28 |
+
# detect objects
|
29 |
+
detections = base_model.grounding_dino_model.predict_with_classes(
|
30 |
+
image=image,
|
31 |
+
classes=[description],
|
32 |
+
box_threshold=base_model.grounding_dino_box_threshold,
|
33 |
+
text_threshold=base_model.grounding_dino_text_threshold,
|
34 |
+
)
|
35 |
|
36 |
+
detections_list.append(detections)
|
37 |
+
|
38 |
+
detections = combine_detections(
|
39 |
+
detections_list, overwrite_class_ids=range(len(detections_list))
|
40 |
+
)
|
41 |
+
|
42 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
43 |
+
base_model.sam_2_predictor.set_image(image)
|
44 |
+
result_masks = []
|
45 |
+
for box in detections.xyxy:
|
46 |
+
masks, scores, _ = base_model.sam_2_predictor.predict(
|
47 |
+
box=box, multimask_output=False
|
48 |
+
)
|
49 |
+
index = np.argmax(scores)
|
50 |
+
masks = masks.astype(bool)
|
51 |
+
result_masks.append(masks[index])
|
52 |
+
|
53 |
+
detections.mask = np.array(result_masks)
|
54 |
+
results = results[results.confidence > 0.3]
|
55 |
|
56 |
mask_annotator = sv.BoxAnnotator()
|
57 |
|
58 |
+
annotated_image = mask_annotator.annotate(
|
59 |
+
image.copy(), detections=results
|
60 |
+
)
|
61 |
|
62 |
return annotated_image
|
63 |
|
64 |
+
demo = gr.Interface(fn=greet, inputs=[gr.inputs.Image(), gr.inputs.Textbox(lines=2, label="Prompt")], outputs="image")
|
|
|
65 |
demo.launch()
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
torch
|
2 |
autodistill
|
3 |
-
numpy
|
4 |
opencv-python>=4.6.0
|
5 |
supervision
|
6 |
roboflow
|
|
|
1 |
torch
|
2 |
autodistill
|
3 |
+
numpy==1.20.0
|
4 |
opencv-python>=4.6.0
|
5 |
supervision
|
6 |
roboflow
|