Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
import logging | |
import tensorflow as tf | |
from tensorflow.keras.layers import Layer | |
from huggingface_hub import snapshot_download | |
# Model config | |
REPO_ID = "can-org/AI-VS-HUMAN-IMAGE-classifier" | |
MODEL_DIR = "./IMG_Models" | |
WEIGHTS_PATH = os.path.join(MODEL_DIR, "latest-my_cnn_model.h5") | |
# Device info (for logging) | |
gpus = tf.config.list_physical_devices("GPU") | |
device = "cuda" if gpus else "cpu" | |
# Global model reference | |
_model_img = None | |
# Custom layer used in the model | |
class Cast(Layer): | |
def call(self, inputs): | |
return tf.cast(inputs, tf.float32) | |
def warmup(): | |
global _model_img | |
download_model_repo() | |
_model_img = load_model() | |
logging.info("Image model is ready.") | |
def download_model_repo(): | |
if os.path.exists(MODEL_DIR) and os.path.isdir(MODEL_DIR): | |
logging.info("Image model already exists, skipping download.") | |
return | |
snapshot_path = snapshot_download(repo_id=REPO_ID) | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
shutil.copytree(snapshot_path, MODEL_DIR, dirs_exist_ok=True) | |
def load_model(): | |
global _model_img | |
if _model_img is not None: | |
return _model_img | |
print(f"{'GPU detected' if device == 'cuda' else 'No GPU detected'}, loading model on {device.upper()}.") | |
_model_img = tf.keras.models.load_model( | |
WEIGHTS_PATH, custom_objects={"Cast": Cast} | |
) | |
print("Model input shape:", _model_img.input_shape) | |
return _model_img | |
def get_model(): | |
global _model_img | |
if _model_img is None: | |
download_model_repo() | |
_model_img = load_model() | |
return _model_img | |