Pujan-Dev's picture
push to testing branch
b8aa51a
import numpy as np
from .model_loader import get_model
# Thresholds
AI_THRESHOLD = 0.55
HUMAN_THRESHOLD = 0.45
def classify_image(image_array: np.ndarray) -> dict:
try:
model = get_model()
predictions = model.predict(image_array)
if predictions.ndim != 2 or predictions.shape[1] != 1:
raise ValueError(
"Model output shape is invalid. Expected shape: (batch, 1)"
)
ai_conf = float(np.clip(predictions[0][0], 0.0, 1.0))
human_conf = 1.0 - ai_conf
# Classification logic
if ai_conf > AI_THRESHOLD:
label = "AI Generated"
elif ai_conf < HUMAN_THRESHOLD:
label = "Human Generated"
else:
label = "Uncertain (Maybe AI)"
return {
"label": label,
"ai_confidence": round(ai_conf * 100, 2),
"human_confidence": round(human_conf * 100, 2),
}
except Exception as e:
return {
"error": str(e),
"label": "Classification Failed",
"ai_confidence": None,
"human_confidence": None,
}