Spaces:
Running
Running
import os | |
import asyncio | |
import logging | |
from io import BytesIO | |
from fastapi import HTTPException, UploadFile, status, Depends | |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
from .inferencer import classify_text | |
from .preprocess import parse_docx, parse_pdf, parse_txt | |
import spacy | |
security = HTTPBearer() | |
nlp = spacy.load("en_core_web_sm") | |
# Verify Bearer token from Authorization header | |
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)): | |
token = credentials.credentials | |
expected_token = os.getenv("MY_SECRET_TOKEN") | |
if token != expected_token: | |
raise HTTPException( | |
status_code=status.HTTP_403_FORBIDDEN, | |
detail="Invalid or expired token" | |
) | |
return token | |
# Classify plain text input | |
async def handle_text_analysis(text: str): | |
text = text.strip() | |
if not text or len(text.split()) < 10: | |
raise HTTPException(status_code=400, detail="Text must contain at least 10 words") | |
if len(text) > 10000: | |
raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, text) | |
return { | |
"result": label, | |
"perplexity": round(perplexity, 2), | |
"ai_likelihood": ai_likelihood | |
} | |
# Extract text from uploaded files (.docx, .pdf, .txt) | |
async def extract_file_contents(file: UploadFile) -> str: | |
content = await file.read() | |
file_stream = BytesIO(content) | |
if file.content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
return parse_docx(file_stream) | |
elif file.content_type == "application/pdf": | |
return parse_pdf(file_stream) | |
elif file.content_type == "text/plain": | |
return parse_txt(file_stream) | |
else: | |
raise HTTPException( | |
status_code=415, | |
detail="Invalid file type. Only .docx, .pdf and .txt are allowed." | |
) | |
# Classify text from uploaded file | |
async def handle_file_upload(file: UploadFile): | |
try: | |
file_contents = await extract_file_contents(file) | |
if len(file_contents) > 10000: | |
raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip() | |
if not cleaned_text: | |
raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.") | |
label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, cleaned_text) | |
return { | |
"content": file_contents, | |
"result": label, | |
"perplexity": round(perplexity, 2), | |
"ai_likelihood": ai_likelihood | |
} | |
except Exception as e: | |
logging.error(f"Error processing file: {e}") | |
raise HTTPException(status_code=500, detail="Error processing the file") | |
async def handle_sentence_level_analysis(text: str): | |
text = text.strip() | |
if not text.endswith("."): | |
text += "." | |
if len(text) > 10000: | |
raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
doc = nlp(text) | |
sentences = [sent.text.strip() for sent in doc.sents] | |
results = [] | |
for sentence in sentences: | |
if not sentence: | |
continue | |
label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, sentence) | |
results.append({ | |
"sentence": sentence, | |
"label": label, | |
"perplexity": round(perplexity, 2), | |
"ai_likelihood": ai_likelihood | |
}) | |
return {"analysis": results}# Analyze each sentence from uploaded file | |
async def handle_file_sentence(file: UploadFile): | |
try: | |
file_contents = await extract_file_contents(file) | |
if len(file_contents) > 10000: | |
raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip() | |
if not cleaned_text: | |
raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.") | |
result = await handle_sentence_level_analysis(cleaned_text) | |
return { | |
"content": file_contents, | |
**result | |
} | |
except Exception as e: | |
logging.error(f"Error processing file: {e}") | |
raise HTTPException(status_code=500, detail="Error processing the file") | |
def classify(text: str): | |
return classify_text(text) | |