Spaces:
Running
Running
| import torch | |
| from .model_loader import get_model_tokenizer | |
| import torch.nn.functional as F | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def classify_text(text: str): | |
| model, tokenizer = get_model_tokenizer() | |
| inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs if isinstance(outputs, torch.Tensor) else outputs.logits | |
| probs = F.softmax(logits, dim=1) | |
| pred = torch.argmax(probs, dim=1).item() | |
| prob_percent = probs[0][pred].item() * 100 | |
| return {"label": "Human" if pred == 0 else "AI", "confidence": round(prob_percent, 2)} | |