camparchimedes commited on
Commit
ad6d7c2
1 Parent(s): 071df52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -30
app.py CHANGED
@@ -13,27 +13,26 @@
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
  #---------------------------------------------------------------------------------------------------------------------------------------------
16
-
17
-
18
  import gradio as gr
19
  from PIL import Image
20
  from pydub import AudioSegment
21
  import os
22
  import re
23
- import warnings
24
  import time
25
- import datetime
 
26
  import subprocess
27
  from pathlib import Path
28
  from fpdf import FPDF
29
 
30
-
31
  from gpuinfo import GPUInfo
32
- import pandas as pd
 
33
  import numpy as np
34
  import torch
35
- import torchaudio
36
- import torchaudio.transforms as transforms
37
 
38
  from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
39
 
@@ -41,21 +40,20 @@ import spacy
41
  import networkx as nx
42
  from sklearn.feature_extraction.text import TfidfVectorizer
43
  from sklearn.metrics.pairwise import cosine_similarity
44
-
45
-
46
-
47
 
48
 
49
  HEADER_INFO = """
50
  # WEB APP ✨| Norwegian WHISPER Model
51
  Switch Work [Transkribering av lydfiler til norsk skrift]
52
  """.strip()
53
- LOGO = "https://huggingface.co/spaces/camparchimedes/transcription_app/blob/main/pic09w9678yhit.png"
54
  SIDEBAR_INFO = f"""
55
- <div align=center>
56
- <img src="{LOGO}" style="width: 99%; height: auto;"/>"""
57
-
58
- warnings.filterwarnings("ignore")
59
 
60
  def convert_to_wav(filepath):
61
  _,file_ending = os.path.splitext(f'{filepath}')
@@ -63,13 +61,6 @@ def convert_to_wav(filepath):
63
  os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
64
  return audio_file
65
 
66
- #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
67
- #def convert_to_wav(audio_file):
68
- #audio = AudioSegment.from_file(audio_file, format="m4a")
69
- #wav_file = "temp.wav"
70
- #audio.export(wav_file, format="wav")
71
- #return wav_file
72
-
73
  device = "cuda" if torch.cuda.is_available() else "cpu"
74
 
75
  pipe = pipeline(
@@ -86,16 +77,12 @@ def transcribe_audio(audio_file, batch_size=10):
86
  start_time = time.time()
87
 
88
  outputs = pipe(audio_file, batch_size=batch_size, return_timestamps=False, generate_kwargs={'task': 'transcribe', 'language': 'no'}) # skip_special_tokens=True
89
- #options = dict(language=selected_source_lang, beam_size=3, best_of=3)
90
- #transcribe_options = dict(task="transcribe", **options)
91
- #result = model.transcribe(file, **transcribe_options)
92
  text = outputs["text"]
93
 
94
  end_time = time.time()
 
95
  output_time = end_time - start_time
96
  word_count = len(text.split())
97
-
98
-
99
  memory = psutil.virtual_memory()
100
  gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
101
  gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
@@ -106,7 +93,6 @@ def transcribe_audio(audio_file, batch_size=10):
106
  *Number of words: {word_count}*
107
  *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*"""
108
 
109
-
110
  return text.strip(), system_info
111
  #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
112
 
@@ -223,7 +209,7 @@ iface = gr.Blocks()
223
 
224
  with iface:
225
 
226
- gr.Image(LOGO) # LOGO variable as string to gr.Image constructor
227
  gr.Markdown(HEADER_INFO)
228
 
229
  with gr.Tabs():
 
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
  #---------------------------------------------------------------------------------------------------------------------------------------------
 
 
16
  import gradio as gr
17
  from PIL import Image
18
  from pydub import AudioSegment
19
  import os
20
  import re
 
21
  import time
22
+ import warnings
23
+ #import datetime
24
  import subprocess
25
  from pathlib import Path
26
  from fpdf import FPDF
27
 
28
+ import psutil
29
  from gpuinfo import GPUInfo
30
+ #import pandas as pd
31
+ #import csv
32
  import numpy as np
33
  import torch
34
+ #import torchaudio
35
+ #import torchaudio.transforms as transforms
36
 
37
  from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
38
 
 
40
  import networkx as nx
41
  from sklearn.feature_extraction.text import TfidfVectorizer
42
  from sklearn.metrics.pairwise import cosine_similarity
43
+ #---------------------------------------------------------------------------------------------------------------------------------------------
44
+ warnings.filterwarnings("ignore")
 
45
 
46
 
47
  HEADER_INFO = """
48
  # WEB APP ✨| Norwegian WHISPER Model
49
  Switch Work [Transkribering av lydfiler til norsk skrift]
50
  """.strip()
51
+ LOGO = "https://huggingface.co/spaces/camparchimedes/transcription_app/resolve/main/pic09w9678yhit.png"
52
  SIDEBAR_INFO = f"""
53
+ <div align="center">
54
+ <img src="{LOGO}" style="width: 100%; height: auto;"/>
55
+ </div>
56
+ """
57
 
58
  def convert_to_wav(filepath):
59
  _,file_ending = os.path.splitext(f'{filepath}')
 
61
  os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
62
  return audio_file
63
 
 
 
 
 
 
 
 
64
  device = "cuda" if torch.cuda.is_available() else "cpu"
65
 
66
  pipe = pipeline(
 
77
  start_time = time.time()
78
 
79
  outputs = pipe(audio_file, batch_size=batch_size, return_timestamps=False, generate_kwargs={'task': 'transcribe', 'language': 'no'}) # skip_special_tokens=True
 
 
 
80
  text = outputs["text"]
81
 
82
  end_time = time.time()
83
+
84
  output_time = end_time - start_time
85
  word_count = len(text.split())
 
 
86
  memory = psutil.virtual_memory()
87
  gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
88
  gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
 
93
  *Number of words: {word_count}*
94
  *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*"""
95
 
 
96
  return text.strip(), system_info
97
  #:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
98
 
 
209
 
210
  with iface:
211
 
212
+ gr.HTML(SIDEBAR_INFO)
213
  gr.Markdown(HEADER_INFO)
214
 
215
  with gr.Tabs():