fusionface / facefusion /face_classifier.py
camikz's picture
Upload 168 files
db86bfc verified
from functools import lru_cache
from typing import List, Tuple
import numpy
from facefusion import inference_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.face_helper import warp_face_by_face_landmark_5
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import Age, DownloadScope, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'fairface':
{
'hashes':
{
'face_classifier':
{
'url': resolve_download_url('models-3.0.0', 'fairface.hash'),
'path': resolve_relative_path('../.assets/models/fairface.hash')
}
},
'sources':
{
'face_classifier':
{
'url': resolve_download_url('models-3.0.0', 'fairface.onnx'),
'path': resolve_relative_path('../.assets/models/fairface.onnx')
}
},
'template': 'arcface_112_v2',
'size': (224, 224),
'mean': [ 0.485, 0.456, 0.406 ],
'standard_deviation': [ 0.229, 0.224, 0.225 ]
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return create_static_model_set('full').get('fairface')
def pre_check() -> bool:
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
def classify_face(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Gender, Age, Race]:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
model_mean = get_model_options().get('mean')
model_standard_deviation = get_model_options().get('standard_deviation')
crop_vision_frame, _ = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size)
crop_vision_frame = crop_vision_frame.astype(numpy.float32)[:, :, ::-1] / 255
crop_vision_frame -= model_mean
crop_vision_frame /= model_standard_deviation
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
gender_id, age_id, race_id = forward(crop_vision_frame)
gender = categorize_gender(gender_id[0])
age = categorize_age(age_id[0])
race = categorize_race(race_id[0])
return gender, age, race
def forward(crop_vision_frame : VisionFrame) -> Tuple[List[int], List[int], List[int]]:
face_classifier = get_inference_pool().get('face_classifier')
with conditional_thread_semaphore():
race_id, gender_id, age_id = face_classifier.run(None,
{
'input': crop_vision_frame
})
return gender_id, age_id, race_id
def categorize_gender(gender_id : int) -> Gender:
if gender_id == 1:
return 'female'
return 'male'
def categorize_age(age_id : int) -> Age:
if age_id == 0:
return range(0, 2)
if age_id == 1:
return range(3, 9)
if age_id == 2:
return range(10, 19)
if age_id == 3:
return range(20, 29)
if age_id == 4:
return range(30, 39)
if age_id == 5:
return range(40, 49)
if age_id == 6:
return range(50, 59)
if age_id == 7:
return range(60, 69)
return range(70, 100)
def categorize_race(race_id : int) -> Race:
if race_id == 1:
return 'black'
if race_id == 2:
return 'latino'
if race_id == 3 or race_id == 4:
return 'asian'
if race_id == 5:
return 'indian'
if race_id == 6:
return 'arabic'
return 'white'