Spaces:
Runtime error
Runtime error
from functools import lru_cache | |
from typing import List, Tuple | |
import numpy | |
from facefusion import inference_manager | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url | |
from facefusion.face_helper import warp_face_by_face_landmark_5 | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import conditional_thread_semaphore | |
from facefusion.typing import Age, DownloadScope, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
return\ | |
{ | |
'fairface': | |
{ | |
'hashes': | |
{ | |
'face_classifier': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'fairface.hash'), | |
'path': resolve_relative_path('../.assets/models/fairface.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_classifier': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'fairface.onnx'), | |
'path': resolve_relative_path('../.assets/models/fairface.onnx') | |
} | |
}, | |
'template': 'arcface_112_v2', | |
'size': (224, 224), | |
'mean': [ 0.485, 0.456, 0.406 ], | |
'standard_deviation': [ 0.229, 0.224, 0.225 ] | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
model_sources = get_model_options().get('sources') | |
return inference_manager.get_inference_pool(__name__, model_sources) | |
def clear_inference_pool() -> None: | |
inference_manager.clear_inference_pool(__name__) | |
def get_model_options() -> ModelOptions: | |
return create_static_model_set('full').get('fairface') | |
def pre_check() -> bool: | |
model_hashes = get_model_options().get('hashes') | |
model_sources = get_model_options().get('sources') | |
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources) | |
def classify_face(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Gender, Age, Race]: | |
model_template = get_model_options().get('template') | |
model_size = get_model_options().get('size') | |
model_mean = get_model_options().get('mean') | |
model_standard_deviation = get_model_options().get('standard_deviation') | |
crop_vision_frame, _ = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size) | |
crop_vision_frame = crop_vision_frame.astype(numpy.float32)[:, :, ::-1] / 255 | |
crop_vision_frame -= model_mean | |
crop_vision_frame /= model_standard_deviation | |
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1) | |
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) | |
gender_id, age_id, race_id = forward(crop_vision_frame) | |
gender = categorize_gender(gender_id[0]) | |
age = categorize_age(age_id[0]) | |
race = categorize_race(race_id[0]) | |
return gender, age, race | |
def forward(crop_vision_frame : VisionFrame) -> Tuple[List[int], List[int], List[int]]: | |
face_classifier = get_inference_pool().get('face_classifier') | |
with conditional_thread_semaphore(): | |
race_id, gender_id, age_id = face_classifier.run(None, | |
{ | |
'input': crop_vision_frame | |
}) | |
return gender_id, age_id, race_id | |
def categorize_gender(gender_id : int) -> Gender: | |
if gender_id == 1: | |
return 'female' | |
return 'male' | |
def categorize_age(age_id : int) -> Age: | |
if age_id == 0: | |
return range(0, 2) | |
if age_id == 1: | |
return range(3, 9) | |
if age_id == 2: | |
return range(10, 19) | |
if age_id == 3: | |
return range(20, 29) | |
if age_id == 4: | |
return range(30, 39) | |
if age_id == 5: | |
return range(40, 49) | |
if age_id == 6: | |
return range(50, 59) | |
if age_id == 7: | |
return range(60, 69) | |
return range(70, 100) | |
def categorize_race(race_id : int) -> Race: | |
if race_id == 1: | |
return 'black' | |
if race_id == 2: | |
return 'latino' | |
if race_id == 3 or race_id == 4: | |
return 'asian' | |
if race_id == 5: | |
return 'indian' | |
if race_id == 6: | |
return 'arabic' | |
return 'white' | |