Spaces:
Runtime error
Runtime error
import os, json, requests, random, time, runpod | |
from urllib.parse import urlsplit | |
import numpy as np | |
import torch | |
import imageio | |
from typing import * | |
from PIL import Image | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/content" | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(image_paths: List[str], seed: int = 0, randomize_seed: bool = True, | |
ss_guidance_strength: float = 7.5, ss_sampling_steps: int = 12, | |
slat_guidance_strength: float = 3.0, slat_sampling_steps: int = 12, preprocess_image: bool = True) -> Tuple[dict, str]: | |
images = [Image.open(image_path) for image_path in image_paths] | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
if len(images) == 1: | |
outputs = pipeline.run( | |
images[0], | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=preprocess_image, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
else: | |
outputs = pipeline.run_multi_image( | |
images, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=preprocess_image, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = "trellis-tost" | |
video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], str(trial_id)) | |
return state, video_path | |
def extract_glb(state: dict, mesh_simplify: float = 0.95, texture_size: int = 1024) -> str: | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
glb.export(glb_path) | |
return glb_path | |
def download_file(url, save_dir, file_name): | |
os.makedirs(save_dir, exist_ok=True) | |
file_suffix = os.path.splitext(urlsplit(url).path)[1] | |
file_name_with_suffix = file_name + file_suffix | |
file_path = os.path.join(save_dir, file_name_with_suffix) | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
return file_path | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("/content/model") | |
pipeline.cuda() | |
def generate(input): | |
values = input["input"] | |
images = values['images'] | |
input_images = [] | |
for i, image in enumerate(images): | |
image_path = download_file(url=image['url'], save_dir='/content', file_name=f'input_image_{i}') | |
input_images.append(image_path) | |
seed = values['seed'] | |
randomize_seed = values['randomize_seed'] | |
ss_guidance_strength = values['ss_guidance_strength'] | |
ss_sampling_steps = values['ss_sampling_steps'] | |
slat_guidance_strength = values['slat_guidance_strength'] | |
slat_sampling_steps = values['slat_sampling_steps'] | |
mesh_simplify = values['mesh_simplify'] | |
texture_size = values['texture_size'] | |
preprocess_image = values['preprocess_image'] | |
state, video_path = image_to_3d(image_paths=input_images, | |
seed=seed, | |
randomize_seed=randomize_seed, | |
ss_guidance_strength=ss_guidance_strength, | |
ss_sampling_steps=ss_sampling_steps, | |
slat_guidance_strength=slat_guidance_strength, | |
slat_sampling_steps=slat_sampling_steps, | |
preprocess_image=preprocess_image | |
) | |
glb_path = extract_glb(state=state, mesh_simplify=mesh_simplify, texture_size=texture_size) | |
result = ["/content/trellis-tost.mp4", ["/content/trellis-tost.glb"]] | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
# default_filename = os.path.basename(result[0]) | |
# with open(result[0], "rb") as file: | |
# files = {default_filename: file.read()} | |
# for path in result[1]: | |
# filename = os.path.basename(path) | |
# with open(path, "rb") as file: | |
# files[filename] = file.read() | |
# payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
# response = requests.post( | |
# f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
# data=payload, | |
# headers={"Authorization": f"Bot {discord_token}"}, | |
# files=files | |
# ) | |
# response.raise_for_status() | |
# result_urls = [attachment['url'] for attachment in response.json()['attachments']] | |
with open(result[0], 'rb') as file0: | |
response0 = requests.post("https://upload.tost.ai/api/v1", files={'file': file0}) | |
response0.raise_for_status() | |
with open(result[1][0], 'rb') as file1: | |
response1 = requests.post("https://upload.tost.ai/api/v1", files={'file': file1}) | |
response1.raise_for_status() | |
result_urls = [response0.text, response1.text] | |
notify_payload = {"jobId": job_id, "result": str(result_urls), "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": str(result_urls), "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists("/content/trellis-tost.mp4"): | |
os.remove("/content/trellis-tost.mp4") | |
if os.path.exists("/content/trellis-tost.glb"): | |
os.remove("/content/trellis-tost.glb") | |
runpod.serverless.start({"handler": generate}) |