Create worker.py
Browse files
worker.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import safetensors.torch as sf
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
9 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
|
10 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
11 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
12 |
+
from briarmbg import BriaRMBG
|
13 |
+
from enum import Enum
|
14 |
+
from torch.hub import download_url_to_file
|
15 |
+
|
16 |
+
import runpod
|
17 |
+
|
18 |
+
# 'stablediffusionapi/realistic-vision-v51'
|
19 |
+
# 'runwayml/stable-diffusion-v1-5'
|
20 |
+
sd15_name = 'stablediffusionapi/realistic-vision-v51'
|
21 |
+
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
|
22 |
+
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
|
23 |
+
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
|
24 |
+
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
|
25 |
+
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
26 |
+
|
27 |
+
# Change UNet
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
|
31 |
+
new_conv_in.weight.zero_()
|
32 |
+
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
|
33 |
+
new_conv_in.bias = unet.conv_in.bias
|
34 |
+
unet.conv_in = new_conv_in
|
35 |
+
|
36 |
+
unet_original_forward = unet.forward
|
37 |
+
|
38 |
+
|
39 |
+
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
|
40 |
+
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
|
41 |
+
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
|
42 |
+
new_sample = torch.cat([sample, c_concat], dim=1)
|
43 |
+
kwargs['cross_attention_kwargs'] = {}
|
44 |
+
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
|
45 |
+
|
46 |
+
|
47 |
+
unet.forward = hooked_unet_forward
|
48 |
+
|
49 |
+
# Load
|
50 |
+
|
51 |
+
model_path = 'iclight_sd15_fc.safetensors'
|
52 |
+
|
53 |
+
if not os.path.exists(model_path):
|
54 |
+
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path)
|
55 |
+
|
56 |
+
sd_offset = sf.load_file(model_path)
|
57 |
+
sd_origin = unet.state_dict()
|
58 |
+
keys = sd_origin.keys()
|
59 |
+
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
|
60 |
+
unet.load_state_dict(sd_merged, strict=True)
|
61 |
+
del sd_offset, sd_origin, sd_merged, keys
|
62 |
+
|
63 |
+
# Device
|
64 |
+
|
65 |
+
device = torch.device('cuda:1')
|
66 |
+
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
|
67 |
+
vae = vae.to(device=device, dtype=torch.bfloat16)
|
68 |
+
unet = unet.to(device=device, dtype=torch.float16)
|
69 |
+
rmbg = rmbg.to(device=device, dtype=torch.float32)
|
70 |
+
|
71 |
+
# SDP
|
72 |
+
|
73 |
+
unet.set_attn_processor(AttnProcessor2_0())
|
74 |
+
vae.set_attn_processor(AttnProcessor2_0())
|
75 |
+
|
76 |
+
# Samplers
|
77 |
+
|
78 |
+
ddim_scheduler = DDIMScheduler(
|
79 |
+
num_train_timesteps=1000,
|
80 |
+
beta_start=0.00085,
|
81 |
+
beta_end=0.012,
|
82 |
+
beta_schedule="scaled_linear",
|
83 |
+
clip_sample=False,
|
84 |
+
set_alpha_to_one=False,
|
85 |
+
steps_offset=1,
|
86 |
+
)
|
87 |
+
|
88 |
+
euler_a_scheduler = EulerAncestralDiscreteScheduler(
|
89 |
+
num_train_timesteps=1000,
|
90 |
+
beta_start=0.00085,
|
91 |
+
beta_end=0.012,
|
92 |
+
steps_offset=1
|
93 |
+
)
|
94 |
+
|
95 |
+
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
|
96 |
+
num_train_timesteps=1000,
|
97 |
+
beta_start=0.00085,
|
98 |
+
beta_end=0.012,
|
99 |
+
algorithm_type="sde-dpmsolver++",
|
100 |
+
use_karras_sigmas=True,
|
101 |
+
steps_offset=1
|
102 |
+
)
|
103 |
+
|
104 |
+
# Pipelines
|
105 |
+
|
106 |
+
t2i_pipe = StableDiffusionPipeline(
|
107 |
+
vae=vae,
|
108 |
+
text_encoder=text_encoder,
|
109 |
+
tokenizer=tokenizer,
|
110 |
+
unet=unet,
|
111 |
+
scheduler=dpmpp_2m_sde_karras_scheduler,
|
112 |
+
safety_checker=None,
|
113 |
+
requires_safety_checker=False,
|
114 |
+
feature_extractor=None,
|
115 |
+
image_encoder=None
|
116 |
+
)
|
117 |
+
|
118 |
+
i2i_pipe = StableDiffusionImg2ImgPipeline(
|
119 |
+
vae=vae,
|
120 |
+
text_encoder=text_encoder,
|
121 |
+
tokenizer=tokenizer,
|
122 |
+
unet=unet,
|
123 |
+
scheduler=dpmpp_2m_sde_karras_scheduler,
|
124 |
+
safety_checker=None,
|
125 |
+
requires_safety_checker=False,
|
126 |
+
feature_extractor=None,
|
127 |
+
image_encoder=None
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
@torch.inference_mode()
|
132 |
+
def encode_prompt_inner(txt: str):
|
133 |
+
max_length = tokenizer.model_max_length
|
134 |
+
chunk_length = tokenizer.model_max_length - 2
|
135 |
+
id_start = tokenizer.bos_token_id
|
136 |
+
id_end = tokenizer.eos_token_id
|
137 |
+
id_pad = id_end
|
138 |
+
|
139 |
+
def pad(x, p, i):
|
140 |
+
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
141 |
+
|
142 |
+
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
|
143 |
+
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
|
144 |
+
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
|
145 |
+
|
146 |
+
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
|
147 |
+
conds = text_encoder(token_ids).last_hidden_state
|
148 |
+
|
149 |
+
return conds
|
150 |
+
|
151 |
+
|
152 |
+
@torch.inference_mode()
|
153 |
+
def encode_prompt_pair(positive_prompt, negative_prompt):
|
154 |
+
c = encode_prompt_inner(positive_prompt)
|
155 |
+
uc = encode_prompt_inner(negative_prompt)
|
156 |
+
|
157 |
+
c_len = float(len(c))
|
158 |
+
uc_len = float(len(uc))
|
159 |
+
max_count = max(c_len, uc_len)
|
160 |
+
c_repeat = int(math.ceil(max_count / c_len))
|
161 |
+
uc_repeat = int(math.ceil(max_count / uc_len))
|
162 |
+
max_chunk = max(len(c), len(uc))
|
163 |
+
|
164 |
+
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
|
165 |
+
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
|
166 |
+
|
167 |
+
c = torch.cat([p[None, ...] for p in c], dim=1)
|
168 |
+
uc = torch.cat([p[None, ...] for p in uc], dim=1)
|
169 |
+
|
170 |
+
return c, uc
|
171 |
+
|
172 |
+
|
173 |
+
@torch.inference_mode()
|
174 |
+
def pytorch2numpy(imgs, quant=True):
|
175 |
+
results = []
|
176 |
+
for x in imgs:
|
177 |
+
y = x.movedim(0, -1)
|
178 |
+
|
179 |
+
if quant:
|
180 |
+
y = y * 127.5 + 127.5
|
181 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
182 |
+
else:
|
183 |
+
y = y * 0.5 + 0.5
|
184 |
+
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
|
185 |
+
|
186 |
+
results.append(y)
|
187 |
+
return results
|
188 |
+
|
189 |
+
|
190 |
+
@torch.inference_mode()
|
191 |
+
def numpy2pytorch(imgs):
|
192 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0
|
193 |
+
h = h.movedim(-1, 1)
|
194 |
+
return h
|
195 |
+
|
196 |
+
|
197 |
+
def resize_and_center_crop(image, target_width, target_height):
|
198 |
+
pil_image = Image.fromarray(image)
|
199 |
+
original_width, original_height = pil_image.size
|
200 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
201 |
+
resized_width = int(round(original_width * scale_factor))
|
202 |
+
resized_height = int(round(original_height * scale_factor))
|
203 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
204 |
+
left = (resized_width - target_width) / 2
|
205 |
+
top = (resized_height - target_height) / 2
|
206 |
+
right = (resized_width + target_width) / 2
|
207 |
+
bottom = (resized_height + target_height) / 2
|
208 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
209 |
+
return np.array(cropped_image)
|
210 |
+
|
211 |
+
|
212 |
+
def resize_without_crop(image, target_width, target_height):
|
213 |
+
pil_image = Image.fromarray(image)
|
214 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
215 |
+
return np.array(resized_image)
|
216 |
+
|
217 |
+
|
218 |
+
@torch.inference_mode()
|
219 |
+
def run_rmbg(img, sigma=0.0):
|
220 |
+
H, W, C = img.shape
|
221 |
+
assert C == 3
|
222 |
+
k = (256.0 / float(H * W)) ** 0.5
|
223 |
+
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
|
224 |
+
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
|
225 |
+
alpha = rmbg(feed)[0][0]
|
226 |
+
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
|
227 |
+
alpha = alpha.movedim(1, -1)[0]
|
228 |
+
alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
|
229 |
+
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
|
230 |
+
return result.clip(0, 255).astype(np.uint8), alpha
|
231 |
+
|
232 |
+
@torch.inference_mode()
|
233 |
+
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
|
234 |
+
input_bg = None
|
235 |
+
|
236 |
+
if bg_source == 'NONE':
|
237 |
+
pass
|
238 |
+
elif bg_source == 'LEFT':
|
239 |
+
gradient = np.linspace(255, 0, image_width)
|
240 |
+
image = np.tile(gradient, (image_height, 1))
|
241 |
+
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
|
242 |
+
elif bg_source == 'RIGHT':
|
243 |
+
gradient = np.linspace(0, 255, image_width)
|
244 |
+
image = np.tile(gradient, (image_height, 1))
|
245 |
+
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
|
246 |
+
elif bg_source == 'TOP':
|
247 |
+
gradient = np.linspace(255, 0, image_height)[:, None]
|
248 |
+
image = np.tile(gradient, (1, image_width))
|
249 |
+
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
|
250 |
+
elif bg_source == 'BOTTOM':
|
251 |
+
gradient = np.linspace(0, 255, image_height)[:, None]
|
252 |
+
image = np.tile(gradient, (1, image_width))
|
253 |
+
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
|
254 |
+
else:
|
255 |
+
raise 'Wrong initial latent!'
|
256 |
+
|
257 |
+
rng = torch.Generator(device=device).manual_seed(int(seed))
|
258 |
+
|
259 |
+
fg = resize_and_center_crop(input_fg, image_width, image_height)
|
260 |
+
|
261 |
+
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
|
262 |
+
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
|
263 |
+
|
264 |
+
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
|
265 |
+
|
266 |
+
if input_bg is None:
|
267 |
+
latents = t2i_pipe(
|
268 |
+
prompt_embeds=conds,
|
269 |
+
negative_prompt_embeds=unconds,
|
270 |
+
width=image_width,
|
271 |
+
height=image_height,
|
272 |
+
num_inference_steps=steps,
|
273 |
+
num_images_per_prompt=num_samples,
|
274 |
+
generator=rng,
|
275 |
+
output_type='latent',
|
276 |
+
guidance_scale=cfg,
|
277 |
+
cross_attention_kwargs={'concat_conds': concat_conds},
|
278 |
+
).images.to(vae.dtype) / vae.config.scaling_factor
|
279 |
+
else:
|
280 |
+
bg = resize_and_center_crop(input_bg, image_width, image_height)
|
281 |
+
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
|
282 |
+
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
|
283 |
+
latents = i2i_pipe(
|
284 |
+
image=bg_latent,
|
285 |
+
strength=lowres_denoise,
|
286 |
+
prompt_embeds=conds,
|
287 |
+
negative_prompt_embeds=unconds,
|
288 |
+
width=image_width,
|
289 |
+
height=image_height,
|
290 |
+
num_inference_steps=int(round(steps / lowres_denoise)),
|
291 |
+
num_images_per_prompt=num_samples,
|
292 |
+
generator=rng,
|
293 |
+
output_type='latent',
|
294 |
+
guidance_scale=cfg,
|
295 |
+
cross_attention_kwargs={'concat_conds': concat_conds},
|
296 |
+
).images.to(vae.dtype) / vae.config.scaling_factor
|
297 |
+
|
298 |
+
pixels = vae.decode(latents).sample
|
299 |
+
pixels = pytorch2numpy(pixels)
|
300 |
+
pixels = [resize_without_crop(
|
301 |
+
image=p,
|
302 |
+
target_width=int(round(image_width * highres_scale / 64.0) * 64),
|
303 |
+
target_height=int(round(image_height * highres_scale / 64.0) * 64))
|
304 |
+
for p in pixels]
|
305 |
+
|
306 |
+
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
|
307 |
+
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
|
308 |
+
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
309 |
+
|
310 |
+
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
|
311 |
+
|
312 |
+
fg = resize_and_center_crop(input_fg, image_width, image_height)
|
313 |
+
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
|
314 |
+
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
|
315 |
+
|
316 |
+
latents = i2i_pipe(
|
317 |
+
image=latents,
|
318 |
+
strength=highres_denoise,
|
319 |
+
prompt_embeds=conds,
|
320 |
+
negative_prompt_embeds=unconds,
|
321 |
+
width=image_width,
|
322 |
+
height=image_height,
|
323 |
+
num_inference_steps=int(round(steps / highres_denoise)),
|
324 |
+
num_images_per_prompt=num_samples,
|
325 |
+
generator=rng,
|
326 |
+
output_type='latent',
|
327 |
+
guidance_scale=cfg,
|
328 |
+
cross_attention_kwargs={'concat_conds': concat_conds},
|
329 |
+
).images.to(vae.dtype) / vae.config.scaling_factor
|
330 |
+
|
331 |
+
pixels = vae.decode(latents).sample
|
332 |
+
|
333 |
+
return pytorch2numpy(pixels)
|
334 |
+
|
335 |
+
import json
|
336 |
+
from diffusers.utils import load_image
|
337 |
+
|
338 |
+
def closestNumber(n, m):
|
339 |
+
q = int(n / m)
|
340 |
+
n1 = m * q
|
341 |
+
if (n * m) > 0:
|
342 |
+
n2 = m * (q + 1)
|
343 |
+
else:
|
344 |
+
n2 = m * (q - 1)
|
345 |
+
if abs(n - n1) < abs(n - n2):
|
346 |
+
return n1
|
347 |
+
return n2
|
348 |
+
|
349 |
+
def is_parsable_json(command):
|
350 |
+
try:
|
351 |
+
json.loads(command)
|
352 |
+
return True
|
353 |
+
except json.JSONDecodeError:
|
354 |
+
return False
|
355 |
+
|
356 |
+
@torch.inference_mode()
|
357 |
+
def generate(command):
|
358 |
+
print(command)
|
359 |
+
if is_parsable_json(command):
|
360 |
+
values = json.loads(command)
|
361 |
+
input_fg = values['input_fg']
|
362 |
+
input_fg = load_image(input_fg)
|
363 |
+
input_fg = np.asarray(input_fg)
|
364 |
+
prompt = values['prompt']
|
365 |
+
width =closestNumber(values['width'], 8)
|
366 |
+
height = closestNumber(values['height'], 8)
|
367 |
+
seed = values['seed']
|
368 |
+
steps = values['steps']
|
369 |
+
a_prompt = values['a_prompt']
|
370 |
+
n_prompt = values['n_prompt']
|
371 |
+
cfg = values['cfg']
|
372 |
+
highres_scale = values['highres_scale']
|
373 |
+
highres_denoise = values['highres_denoise']
|
374 |
+
lowres_denoise = values['lowres_denoise']
|
375 |
+
bg_source = values['bg_source']
|
376 |
+
input_fg, matting = run_rmbg(input_fg)
|
377 |
+
images = process(input_fg, prompt, width, height, 1, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source)
|
378 |
+
image = Image.fromarray(images[0])
|
379 |
+
image.save('/content/image.jpg')
|
380 |
+
return image
|
381 |
+
else:
|
382 |
+
input_fg = load_image("https://hips.hearstapps.com/hmg-prod/images/scarlett-johansson-attends-the-premiere-of-illuminations-news-photo-1639390369.jpg?crop=1.00xw:0.836xh;0,0&resize=640:*")
|
383 |
+
input_fg = np.asarray(input_fg)
|
384 |
+
width = closestNumber(512, 8)
|
385 |
+
height = closestNumber(512, 8)
|
386 |
+
images = process(input_fg, command, width, height, 1, 1, 25, 'best quality', 'lowres, bad anatomy, bad hands, cropped, worst quality', 2, 1.5, 0.5, 0.9, 'RIGHT')
|
387 |
+
image = Image.fromarray(images[0])
|
388 |
+
image.save('/content/image.jpg')
|
389 |
+
return image
|
390 |
+
|
391 |
+
runpod.serverless.start({"handler": generate})
|