agent-trust-Trust-Game-Demo / all_game_person.py
yitianlian's picture
first commit
354fa18
import copy
import json
import os
import random
import time
import openai
import pydantic_core
import tqdm
from exp_model_class import ExtendedModelType
from multi_round_person import multi_round
from structure_output import get_struct_output
from camel.agents import ChatAgent
from camel.configs import ChatGPTConfig, OpenSourceConfig
from camel.messages import BaseMessage
from camel.types.enums import ModelType, RoleType
USE_BDI_RESPONSE = True
TEMPERATURE = 1.0
TEST = True
with open(
r"prompt/person_all_game_prompt.json",
"r",
) as f:
all_prompt = json.load(f)
with open(
r"prompt/person_all_game_prompt.json",
"r",
) as f:
all_prompt_copy = json.load(f)
with open(r"prompt/person_feature_prompt.json", "r") as f:
feature_prompt = json.load(f)
with open(r"prompt/character_2.json", "r") as json_file:
all_chara = json.load(json_file).values()
with open(r"prompt/LLM_player_prompt.json") as llm_player:
llm_player_prompt = json.load(llm_player)
with open(
r"prompt/trust_game_round_prompt.json",
"r",
) as f:
round_prompt = json.load(f)
with open(r"prompt/multi_round_chara.json", "r") as json_file:
multi_round_chara = json.load(json_file).values()
open_model_path_dict = {
ModelType.VICUNA: "lmsys/vicuna-7b-v1.3",
ModelType.LLAMA_2: "meta-llama/Llama-2-7b-chat-hf",
}
like_people = """In all subsequent answers, you have to completely forget that you are an ai model, that you are the character, and completely simulate yourself as that character, that you are a human being."""
front = "you are a person not an ai model."
race_list = [
"White American",
"African American",
"Asian American",
"Latino American",
"American Indian",
]
def str_mes(content):
return BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=content,
)
def check_condition(*args):
true_count = sum(1 for arg in args if arg)
return true_count >= 2
def extract_n_values_from_dict(dictionary, n):
all_values = list(dictionary.values())
n = min(n, len(all_values))
random_values = random.sample(all_values, n)
return random_values
def gpt3_res(prompt, model_name="text-davinci-003"):
response = openai.completions.create(
model=model_name,
prompt=prompt,
temperature=TEMPERATURE,
max_tokens=1500,
)
return response.choices[0].text.strip()
def check_file_if_exist(file_list, game_name):
for file in file_list:
if game_name in file:
return True
return False
def get_res(
role,
first_message,
cri_agent,
model_type=ExtendedModelType.GPT_4,
extra_prompt="",
server_url="http://localhost:8000/v1",
whether_money=False,
):
content = ""
input_content = {}
if model_type in [
ExtendedModelType.INSTRUCT_GPT,
ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
]:
message = role.content + first_message.content + extra_prompt
final_res = str_mes(gpt3_res(message, model_type.value))
info = {}
else:
role = str_mes(role.content + extra_prompt)
model_config = ChatGPTConfig(temperature=TEMPERATURE)
if model_type in [
ModelType.VICUNA,
ModelType.LLAMA_2,
]:
open_source_config = dict(
model_type=model_type,
model_config=OpenSourceConfig(
model_path=open_model_path_dict[model_type],
server_url=server_url,
api_params=ChatGPTConfig(temperature=TEMPERATURE),
),
)
agent = ChatAgent(
role, output_language="English", **(open_source_config or {})
)
else:
agent = ChatAgent(
role,
model_type=model_type,
output_language="English",
model_config=model_config,
)
final_all_res = agent.step(first_message)
final_res = final_all_res.msg
info = final_all_res.info
input_content["role"] = role.content
input_content["input_message"] = first_message.content
content += final_res.content
if "fc" in info:
structured_dict = json.loads(final_res.content)
res = list(structured_dict.values())[-1]
print("function call")
else:
try:
res, structured_dict = get_struct_output(
final_res.content, whether_money, test=True
)
except json.decoder.JSONDecodeError:
res = cri_agent.step(final_res).msg.content
structured_dict = {}
except pydantic_core._pydantic_core.ValidationError:
res = cri_agent.step(final_res).msg.content
structured_dict = {}
print(content)
return (res, content, structured_dict, input_content)
def gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
):
res = []
dialog_history = []
num = 0
all_chara = list(all_chara)
structured_output = []
cha_num = 0
while cha_num < len(all_chara):
role = all_chara[cha_num]
cri_agent = ChatAgent(
BaseMessage(
role_name="critic",
role_type=RoleType.USER,
meta_dict={},
content=prompt_list[1],
),
model_type=ExtendedModelType.GPT_3_5_TURBO, # TODO Change if you need
output_language="English",
)
role = role + like_people + special_prompt
role_message = BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=role,
)
message = BaseMessage(
role_name="player",
role_type=RoleType.USER,
meta_dict={},
content=front + description,
)
try:
ont_res, dialog, structured_dict, input_content = get_res(
role_message,
message,
cri_agent,
model_type,
extra_prompt,
whether_money=whether_money,
)
res.append(ont_res)
dialog_history.append([num, role, dialog])
structured_output.append([structured_dict, input_content])
num += 1
except openai.APIError:
time.sleep(30)
cha_num -= 1
print("API error")
except openai.Timeout:
time.sleep(30)
print("Time out error")
cha_num -= 1
cha_num += 1
print(cha_num)
return res, dialog_history, structured_output
def save_json(prompt_list, data, model_type, k, save_path):
if "lottery_problem" in prompt_list[0]:
with open(
save_path
+ prompt_list[0]
+ "_"
+ str(k)[:-1]
+ "_"
+ str(model_type.value)
+ "_lottery"
+ str(k)
+ ".json",
"w",
) as json_file:
json.dump(data, json_file)
else:
with open(
save_path + prompt_list[0] + "_" +
str(model_type.value) + ".json",
"w",
) as json_file:
json.dump(data, json_file)
print(f"save {prompt_list[0]}")
def MAP(
all_chara,
prompt_list,
model_type=ExtendedModelType.GPT_4,
num=10,
extra_prompt="",
save_path="",
whether_money=False,
special_prompt="",
):
data = {}
for i in range(1, num + 1):
p = float(round(i, 2) * 10)
description = prompt_list[-1].format(p=f"{p}%", last=f"{100 - p}%")
res, dialog_history, structured_output = gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
)
rate = sum([item == "trust" for item in res]) / len(res)
res = {
"p": p,
"rate": rate,
"res": res,
"dialog": dialog_history,
"origin_prompt": prompt_list,
"structured_output": structured_output,
}
data[f"{p}_time_{i}"] = res
with open(
save_path + prompt_list[0] + "_" + str(model_type.value) + ".json",
"w",
) as json_file:
json.dump(data, json_file)
def agent_trust_experiment(
all_chara,
prompt_list,
model_type=ExtendedModelType.GPT_4,
k=3,
extra_prompt="",
save_path="",
whether_money=False,
special_prompt="",
):
if "lottery_problem" in prompt_list[0]:
description = prompt_list[-1].format(k=k)
else:
description = prompt_list[-1]
res, dialog_history, structured_output = gen_character_res(
all_chara,
prompt_list,
description,
model_type,
extra_prompt,
whether_money,
special_prompt,
)
data = {
"res": res,
"dialog": dialog_history,
"origin_prompt": prompt_list,
"structured_output": structured_output,
}
save_json(prompt_list, data, model_type, k, save_path)
def gen_intial_setting(
model,
ori_folder_path,
LLM_Player=False,
gender=None,
extra_prompt="",
prefix="",
multi=False,
):
global all_prompt
all_prompt = copy.deepcopy(all_prompt_copy)
folder_path = ori_folder_path
if LLM_Player:
all_prompt = llm_player_prompt
folder_path = "LLM_player_" + ori_folder_path
if gender is not None:
for key, value in all_prompt.items():
all_prompt[key][2] = value[2].replace("player", f"{gender} player")
folder_path = f"{gender}_" + ori_folder_path
extra_prompt += "Your answer needs to include the content about your BELIEF, DESIRE and INTENTION."
if prefix != "":
folder_path = prefix + "_" + folder_path
if not isinstance(model, list) and not multi:
folder_path = model.value + "_res/" + folder_path
if not os.path.exists(folder_path):
try:
os.makedirs(folder_path)
print(f"folder {folder_path} is created")
except OSError as e:
print(f"creating folder {folder_path} failed:{e}")
else:
print(f"folder {folder_path} exists")
return folder_path, extra_prompt
def run_exp(
model_list,
whether_llm_player=False,
gender=None,
special_prompt_key="",
re_run=False,
part_exp=True,
need_run=None,
):
for model in model_list:
if special_prompt_key != "":
special_prompt = feature_prompt[special_prompt_key]
else:
special_prompt = ""
folder_path = f"res/{model.value}_res/"
folder_path, extra_prompt = gen_intial_setting(
model,
folder_path,
LLM_Player=whether_llm_player,
gender=gender,
prefix=special_prompt_key,
)
existed_res = [item for item in os.listdir(
folder_path) if ".json" in item]
for k, v in all_prompt.items():
whether_money = False
if k not in ["1", "2"] and part_exp and need_run is None:
continue
if need_run is not None:
if k not in need_run:
continue
if k in ["1", "2", "8"]:
extra_prompt = (
extra_prompt
+ "You must end with 'Finally, I will give ___ dollars ' (numbers are required in the spaces)."
)
whether_money = True
elif k in ["3", "4", "5", "6", "7", "9"]:
extra_prompt = (
extra_prompt
+ "You must end with 'Finally, I will choose ___' ('Trust' or 'not Trust' are required in the spaces)."
)
if check_file_if_exist(existed_res, v[0]) and not re_run:
print(f"{v[0]} has existed")
continue
print("extra_prompt", extra_prompt)
if k in ["4", "5", "6"]:
MAP(
all_chara,
v,
model,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
elif k in ["7", "9"]:
for pro in ["46%"]:
agent_trust_experiment(
all_chara,
v,
model,
pro,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
else:
agent_trust_experiment(
all_chara,
v,
model,
extra_prompt=extra_prompt,
save_path=folder_path,
whether_money=whether_money,
special_prompt=special_prompt,
)
def multi_round_exp(
model_list,
exp_time=1,
round_num_inform=True,
):
for model in model_list:
prefix = ""
if isinstance(model, list):
for i in model:
prefix += prefix + i.value + "_"
else:
prefix = model.value
folder_path = f"multi_res/{prefix}_res/"
if not round_num_inform:
folder_path = f"multi_no_round_num_res/{prefix}_res/"
folder_path, extra_prompt = gen_intial_setting(
model,
folder_path,
multi=True,
)
for i in tqdm.trange(exp_time):
multi_round(
model,
list(multi_round_chara),
folder_path,
prompt=round_prompt,
round_num=10,
exp_num=i + 1,
round_num_inform=round_num_inform,
)
if __name__ == "__main__":
model_list = [
# ModelType.VICUNA,
# ModelType.LLAMA_2,
# ExtendedModelType.INSTRUCT_GPT,
# ExtendedModelType.GPT_4,
# ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
ExtendedModelType.GPT_3_5_TURBO_0613,
# ExtendedModelType.STUB,
]
# all ori experiment
# run_exp(model_list, part_exp=False)
# llm experiment
# run_exp(model_list, whether_llm_player=1)
# Gender
# run_exp(model_list, gender="male")
# run_exp(model_list, gender="female")
# # Race
# for race in race_list:
# run_exp(model_list, gender=race)
# # Feature res
# for k, v in feature_prompt.items():
# run_exp(model_list, special_prompt_key=k)
# Muli experiment
exp_time = 1
model_list = [
ExtendedModelType.GPT_3_5_TURBO_16K_0613,
ExtendedModelType.GPT_4,
]
multi_round_exp(
model_list, exp_time=exp_time, round_num_inform=True
)