Spaces:
Runtime error
Runtime error
from tqdm import tqdm | |
from typing import Optional, Dict, Any, Tuple, List | |
import gc | |
import torch | |
from transformers.cache_utils import Cache, DynamicCache, OffloadedCache | |
class OmniGenCache(DynamicCache): | |
def __init__(self, | |
num_tokens_for_img: int, offload_kv_cache: bool=False) -> None: | |
if not torch.cuda.is_available(): | |
raise RuntimeError("OffloadedCache can only be used with a GPU") | |
super().__init__() | |
self.original_device = [] | |
self.prefetch_stream = torch.cuda.Stream() | |
self.num_tokens_for_img = num_tokens_for_img | |
self.offload_kv_cache = offload_kv_cache | |
def prefetch_layer(self, layer_idx: int): | |
"Starts prefetching the next layer cache" | |
if layer_idx < len(self): | |
with torch.cuda.stream(self.prefetch_stream): | |
# Prefetch next layer tensors to GPU | |
device = self.original_device[layer_idx] | |
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True) | |
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True) | |
def evict_previous_layer(self, layer_idx: int): | |
"Moves the previous layer cache to the CPU" | |
if len(self) > 2: | |
# We do it on the default stream so it occurs after all earlier computations on these tensors are done | |
if layer_idx == 0: | |
prev_layer_idx = -1 | |
else: | |
prev_layer_idx = (layer_idx - 1) % len(self) | |
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True) | |
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True) | |
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]: | |
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer." | |
if layer_idx < len(self): | |
if self.offload_kv_cache: | |
# Evict the previous layer if necessary | |
torch.cuda.current_stream().synchronize() | |
self.evict_previous_layer(layer_idx) | |
# Load current layer cache to its original device if not already there | |
original_device = self.original_device[layer_idx] | |
# self.prefetch_stream.synchronize(original_device) | |
torch.cuda.synchronize(self.prefetch_stream) | |
key_tensor = self.key_cache[layer_idx] | |
value_tensor = self.value_cache[layer_idx] | |
# Prefetch the next layer | |
self.prefetch_layer((layer_idx + 1) % len(self)) | |
else: | |
key_tensor = self.key_cache[layer_idx] | |
value_tensor = self.value_cache[layer_idx] | |
return (key_tensor, value_tensor) | |
else: | |
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") | |
def update( | |
self, | |
key_states: torch.Tensor, | |
value_states: torch.Tensor, | |
layer_idx: int, | |
cache_kwargs: Optional[Dict[str, Any]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. | |
Parameters: | |
key_states (`torch.Tensor`): | |
The new key states to cache. | |
value_states (`torch.Tensor`): | |
The new value states to cache. | |
layer_idx (`int`): | |
The index of the layer to cache the states for. | |
cache_kwargs (`Dict[str, Any]`, `optional`): | |
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`. | |
Return: | |
A tuple containing the updated key and value states. | |
""" | |
# Update the cache | |
if len(self.key_cache) < layer_idx: | |
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.") | |
elif len(self.key_cache) == layer_idx: | |
# only cache the states for condition tokens | |
key_states = key_states[..., :-(self.num_tokens_for_img+1), :] | |
value_states = value_states[..., :-(self.num_tokens_for_img+1), :] | |
# Update the number of seen tokens | |
if layer_idx == 0: | |
self._seen_tokens += key_states.shape[-2] | |
self.key_cache.append(key_states) | |
self.value_cache.append(value_states) | |
self.original_device.append(key_states.device) | |
if self.offload_kv_cache: | |
self.evict_previous_layer(layer_idx) | |
return self.key_cache[layer_idx], self.value_cache[layer_idx] | |
else: | |
# only cache the states for condition tokens | |
key_tensor, value_tensor = self[layer_idx] | |
k = torch.cat([key_tensor, key_states], dim=-2) | |
v = torch.cat([value_tensor, value_states], dim=-2) | |
return k, v | |
class OmniGenScheduler: | |
def __init__(self, num_steps: int=50, time_shifting_factor: int=1): | |
self.num_steps = num_steps | |
self.time_shift = time_shifting_factor | |
t = torch.linspace(0, 1, num_steps+1) | |
t = t / (t + time_shifting_factor - time_shifting_factor * t) | |
self.sigma = t | |
def crop_kv_cache(self, past_key_values, num_tokens_for_img): | |
# return | |
crop_past_key_values = () | |
for layer_idx in range(len(past_key_values)): | |
key_states, value_states = past_key_values[layer_idx][:2] | |
crop_past_key_values += ((key_states[..., :-(num_tokens_for_img+1), :], value_states[..., :-(num_tokens_for_img+1), :], ),) | |
# return crop_past_key_values | |
return DynamicCache.from_legacy_cache(crop_past_key_values) | |
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): | |
if isinstance(position_ids, list): | |
for i in range(len(position_ids)): | |
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] | |
else: | |
position_ids = position_ids[:, -(num_tokens_for_img+1):] | |
return position_ids | |
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): | |
if isinstance(attention_mask, list): | |
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] | |
return attention_mask[..., -(num_tokens_for_img+1):, :] | |
def crop_cache(self, cache, num_tokens_for_img): | |
for i in range(len(cache.key_cache)): | |
cache.key_cache[i] = cache.key_cache[i][..., :-(num_tokens_for_img+1), :] | |
cache.value_cache[i] = cache.value_cache[i][..., :-(num_tokens_for_img+1), :] | |
return cache | |
def __call__(self, z, func, model_kwargs, use_kv_cache: bool=True, offload_kv_cache: bool=True): | |
num_tokens_for_img = z.size(-1)*z.size(-2) // 4 | |
if isinstance(model_kwargs['input_ids'], list): | |
cache = [OmniGenCache(num_tokens_for_img, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None | |
else: | |
cache = OmniGenCache(num_tokens_for_img, offload_kv_cache) if use_kv_cache else None | |
results = {} | |
for i in tqdm(range(self.num_steps)): | |
timesteps = torch.zeros(size=(len(z), )).to(z.device) + self.sigma[i] | |
pred, cache = func(z, timesteps, past_key_values=cache, **model_kwargs) | |
sigma_next = self.sigma[i+1] | |
sigma = self.sigma[i] | |
z = z + (sigma_next - sigma) * pred | |
if i == 0 and use_kv_cache: | |
num_tokens_for_img = z.size(-1)*z.size(-2) // 4 | |
if isinstance(cache, list): | |
model_kwargs['input_ids'] = [None] * len(cache) | |
else: | |
model_kwargs['input_ids'] = None | |
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) | |
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) | |
del cache | |
torch.cuda.empty_cache() | |
gc.collect() | |
return z | |