callMeHeisenberg's picture
Upload 10 files
daf0991 verified
raw
history blame
14 kB
import os
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import gc
from PIL import Image
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from diffusers.models import AutoencoderKL
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from safetensors.torch import load_file
from OmniGen import OmniGen, OmniGenProcessor, OmniGenScheduler
logger = logging.get_logger(__name__)
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from OmniGen import OmniGenPipeline
>>> pipe = FluxControlNetPipeline.from_pretrained(
... base_model
... )
>>> prompt = "A woman holds a bouquet of flowers and faces the camera"
>>> image = pipe(
... prompt,
... guidance_scale=2.5,
... num_inference_steps=50,
... ).images[0]
>>> image.save("t2i.png")
```
"""
90
class OmniGenPipeline:
def __init__(
self,
vae: AutoencoderKL,
model: OmniGen,
processor: OmniGenProcessor,
):
self.vae = vae
self.model = model
self.processor = processor
if torch.cuda.is_available():
self.device = torch.device("cuda")
elif torch.backends.mps.is_available():
self.device = torch.device("mps")
else:
logger.info("Don't detect any available GPUs, using CPU instead, this may take long time to generate image!!!")
self.device = torch.device("cpu")
self.model.to(torch.bfloat16)
self.model.eval()
self.vae.eval()
self.model_cpu_offload = False
@classmethod
def from_pretrained(cls, model_name, vae_path: str=None):
if not os.path.exists(model_name) or (not os.path.exists(os.path.join(model_name, 'model.safetensors')) and model_name == "Shitao/OmniGen-v1"):
logger.info("Model not found, downloading...")
cache_folder = os.getenv('HF_HUB_CACHE')
model_name = snapshot_download(repo_id=model_name,
cache_dir=cache_folder,
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5', 'model.pt'])
logger.info(f"Downloaded model to {model_name}")
model = OmniGen.from_pretrained(model_name)
processor = OmniGenProcessor.from_pretrained(model_name)
if os.path.exists(os.path.join(model_name, "vae")):
vae = AutoencoderKL.from_pretrained(os.path.join(model_name, "vae"))
elif vae_path is not None:
vae = AutoencoderKL.from_pretrained(vae_path).to(device)
else:
logger.info(f"No VAE found in {model_name}, downloading stabilityai/sdxl-vae from HF")
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to(device)
return cls(vae, model, processor)
def merge_lora(self, lora_path: str):
model = PeftModel.from_pretrained(self.model, lora_path)
model.merge_and_unload()
self.model = model
def to(self, device: Union[str, torch.device]):
if isinstance(device, str):
device = torch.device(device)
self.model.to(device)
self.vae.to(device)
self.device = device
def vae_encode(self, x, dtype):
if self.vae.config.shift_factor is not None:
x = self.vae.encode(x).latent_dist.sample()
x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
x = x.to(dtype)
return x
def move_to_device(self, data):
if isinstance(data, list):
return [x.to(self.device) for x in data]
return data.to(self.device)
def enable_model_cpu_offload(self):
self.model_cpu_offload = True
self.model.to("cpu")
self.vae.to("cpu")
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
def disable_model_cpu_offload(self):
self.model_cpu_offload = False
self.model.to(self.device)
self.vae.to(self.device)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
input_images: Union[List[str], List[List[str]]] = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 50,
guidance_scale: float = 3,
use_img_guidance: bool = True,
img_guidance_scale: float = 1.6,
max_input_image_size: int = 1024,
separate_cfg_infer: bool = True,
offload_model: bool = False,
use_kv_cache: bool = True,
offload_kv_cache: bool = True,
use_input_image_size_as_output: bool = False,
dtype: torch.dtype = torch.bfloat16,
seed: int = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
input_images (`List[str]` or `List[List[str]]`, *optional*):
The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image. The number must be a multiple of 16.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image. The number must be a multiple of 16.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
use_img_guidance (`bool`, *optional*, defaults to True):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
img_guidance_scale (`float`, *optional*, defaults to 1.6):
Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
max_input_image_size (`int`, *optional*, defaults to 1024): the maximum size of input image, which will be used to crop the input image to the maximum size
separate_cfg_infer (`bool`, *optional*, defaults to False):
Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
offload_kv_cache (`bool`, *optional*, defaults to True): offload the cached key and value to cpu, which can save memory but slow down the generation silightly
offload_model (`bool`, *optional*, defaults to False): offload the model to cpu, which can save memory but slow down the generation
use_input_image_size_as_output (bool, defaults to False): whether to use the input image size as the output image size, which can be used for single-image input, e.g., image editing task
seed (`int`, *optional*):
A random seed for generating output.
dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
data type for the model
Examples:
Returns:
A list with the generated images.
"""
# check inputs:
if use_input_image_size_as_output:
assert isinstance(prompt, str) and len(input_images) == 1, "if you want to make sure the output image have the same size as the input image, please only input one image instead of multiple input images"
else:
assert height%16 == 0 and width%16 == 0, "The height and width must be a multiple of 16."
if input_images is None:
use_img_guidance = False
if isinstance(prompt, str):
prompt = [prompt]
input_images = [input_images] if input_images is not None else None
# set model and processor
if max_input_image_size != self.processor.max_image_size:
self.processor = OmniGenProcessor(self.processor.text_tokenizer, max_image_size=max_input_image_size)
if offload_model:
self.enable_model_cpu_offload()
else:
self.disable_model_cpu_offload()
input_data = self.processor(prompt, input_images, height=height, width=width, use_img_cfg=use_img_guidance, separate_cfg_input=separate_cfg_infer, use_input_image_size_as_output=use_input_image_size_as_output)
num_prompt = len(prompt)
num_cfg = 2 if use_img_guidance else 1
if use_input_image_size_as_output:
if separate_cfg_infer:
height, width = input_data['input_pixel_values'][0][0].shape[-2:]
else:
height, width = input_data['input_pixel_values'][0].shape[-2:]
latent_size_h, latent_size_w = height//8, width//8
if seed is not None:
generator = torch.Generator(device=self.device).manual_seed(seed)
else:
generator = None
latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
latents = torch.cat([latents]*(1+num_cfg), 0).to(dtype)
if input_images is not None and self.model_cpu_offload: self.vae.to(self.device)
input_img_latents = []
if separate_cfg_infer:
for temp_pixel_values in input_data['input_pixel_values']:
temp_input_latents = []
for img in temp_pixel_values:
img = self.vae_encode(img.to(self.device), dtype)
temp_input_latents.append(img)
input_img_latents.append(temp_input_latents)
else:
for img in input_data['input_pixel_values']:
img = self.vae_encode(img.to(self.device), dtype)
input_img_latents.append(img)
if input_images is not None and self.model_cpu_offload:
self.vae.to('cpu')
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
model_kwargs = dict(input_ids=self.move_to_device(input_data['input_ids']),
input_img_latents=input_img_latents,
input_image_sizes=input_data['input_image_sizes'],
attention_mask=self.move_to_device(input_data["attention_mask"]),
position_ids=self.move_to_device(input_data["position_ids"]),
cfg_scale=guidance_scale,
img_cfg_scale=img_guidance_scale,
use_img_cfg=use_img_guidance,
use_kv_cache=use_kv_cache,
offload_model=offload_model,
)
if separate_cfg_infer:
func = self.model.forward_with_separate_cfg
else:
func = self.model.forward_with_cfg
self.model.to(dtype)
if self.model_cpu_offload:
for name, param in self.model.named_parameters():
if 'layers' in name and 'layers.0' not in name:
param.data = param.data.cpu()
else:
param.data = param.data.to(self.device)
for buffer_name, buffer in self.model.named_buffers():
setattr(self.model, buffer_name, buffer.to(self.device))
# else:
# self.model.to(self.device)
scheduler = OmniGenScheduler(num_steps=num_inference_steps)
samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache, offload_kv_cache=offload_kv_cache)
samples = samples.chunk((1+num_cfg), dim=0)[0]
if self.model_cpu_offload:
self.model.to('cpu')
torch.cuda.empty_cache()
gc.collect()
self.vae.to(self.device)
samples = samples.to(torch.float32)
if self.vae.config.shift_factor is not None:
samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
else:
samples = samples / self.vae.config.scaling_factor
samples = self.vae.decode(samples).sample
if self.model_cpu_offload:
self.vae.to('cpu')
torch.cuda.empty_cache()
gc.collect()
output_samples = (samples * 0.5 + 0.5).clamp(0, 1)*255
output_samples = output_samples.permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
output_images = []
for i, sample in enumerate(output_samples):
output_images.append(Image.fromarray(sample))
torch.cuda.empty_cache() # Clear VRAM
gc.collect() # Run garbage collection to free system RAM
return output_images