|
import streamlit as st |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
|
|
model_id = "Narrativaai/BioGPT-Large-finetuned-chatdoctor" |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large") |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
|
|
def answer_question(prompt, temperature=0.1, top_p=0.75, top_k=40, num_beams=2, **kwargs): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to("cpu") |
|
attention_mask = inputs["attention_mask"].to("cpu") |
|
generation_config = GenerationConfig( |
|
temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=512, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s, skip_special_tokens=True) |
|
return output.split(" Response:")[1] |
|
|
|
|
|
st.set_page_config(page_title="Medical Chat Bot", page_icon=":ambulance:", layout="wide") |
|
st.title("Medical Chat Bot") |
|
st.caption("Talk your way to better health") |
|
|
|
with open("./sidebar.md", "r") as sidebar_file: |
|
sidebar_content = sidebar_file.read() |
|
|
|
with open("./styles.md", "r") as styles_file: |
|
styles_content = styles_file.read() |
|
|
|
|
|
st.sidebar.markdown(sidebar_content) |
|
|
|
st.write(styles_content, unsafe_allow_html=True) |
|
|
|
|
|
st.write("Please enter your question below:") |
|
|
|
|
|
user_input = st.text_input("You: ") |
|
|
|
if user_input: |
|
|
|
bot_response = answer_question(f"Input: {user_input}\nResponse:") |
|
st.write("") |
|
st.write("Bot:", bot_response) |
|
|
|
|
|
|