Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from matplotlib import ticker
|
4 |
+
from sklearn import manifold, datasets
|
5 |
+
from mpl_toolkits.mplot3d import Axes3D
|
6 |
+
|
7 |
+
|
8 |
+
def compare_manifold_learning(methods, n_samples, n_neighbors, n_components, perplexity):
|
9 |
+
S_points, S_color = datasets.make_s_curve(n_samples, random_state=0)
|
10 |
+
transformed_data = []
|
11 |
+
|
12 |
+
for method in methods:
|
13 |
+
manifold_method = {
|
14 |
+
"LLE Standard": manifold.LocallyLinearEmbedding(method="standard", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
15 |
+
"LLE LTSA": manifold.LocallyLinearEmbedding(method="ltsa", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
16 |
+
"LLE Hessian": manifold.LocallyLinearEmbedding(method="hessian", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
17 |
+
"LLE Modified": manifold.LocallyLinearEmbedding(method="modified", n_neighbors=n_neighbors, n_components=n_components, eigen_solver="auto", random_state=0),
|
18 |
+
"Isomap": manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components, p=1),
|
19 |
+
"MDS": manifold.MDS(n_components=n_components, max_iter=50, n_init=4, random_state=0, normalized_stress=False),
|
20 |
+
"Spectral Embedding": manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors),
|
21 |
+
"t-SNE": manifold.TSNE(n_components=n_components, perplexity=perplexity, init="random", n_iter=250, random_state=0)
|
22 |
+
}[method]
|
23 |
+
S_transformed = manifold_method.fit_transform(S_points)
|
24 |
+
transformed_data.append(S_transformed)
|
25 |
+
|
26 |
+
fig, axs = plt.subplots(1, len(transformed_data), figsize=(6 * len(transformed_data), 6))
|
27 |
+
fig.suptitle("Manifold Learning Comparison", fontsize=16)
|
28 |
+
|
29 |
+
for ax, method, data in zip(axs, methods, transformed_data):
|
30 |
+
ax.scatter(data[:, 0], data[:, 1], c=S_color, cmap=plt.cm.Spectral)
|
31 |
+
ax.set_title(f"Method: {method}")
|
32 |
+
ax.axis("tight")
|
33 |
+
ax.axis("off")
|
34 |
+
ax.xaxis.set_major_locator(ticker.NullLocator())
|
35 |
+
ax.yaxis.set_major_locator(ticker.NullLocator())
|
36 |
+
|
37 |
+
plt.tight_layout()
|
38 |
+
plt.savefig("plot.png")
|
39 |
+
plt.close()
|
40 |
+
|
41 |
+
return "plot.png"
|
42 |
+
|
43 |
+
method_options = [
|
44 |
+
"LLE Standard",
|
45 |
+
"LLE LTSA",
|
46 |
+
"LLE Hessian",
|
47 |
+
"LLE Modified",
|
48 |
+
"Isomap",
|
49 |
+
"MDS",
|
50 |
+
"Spectral Embedding",
|
51 |
+
"t-SNE"
|
52 |
+
]
|
53 |
+
|
54 |
+
inputs = [
|
55 |
+
gr.components.CheckboxGroup(method_options, label="Manifold Learning Methods"),
|
56 |
+
gr.inputs.Slider(default=1500, label="Number of Samples", maximum=5000),
|
57 |
+
gr.inputs.Slider(default=12, label="Number of Neighbors"),
|
58 |
+
gr.inputs.Slider(default=2, label="Number of Components"),
|
59 |
+
gr.inputs.Slider(default=30, label="Perplexity (for t-SNE)")
|
60 |
+
]
|
61 |
+
|
62 |
+
gr.Interface(
|
63 |
+
fn=compare_manifold_learning,
|
64 |
+
inputs=inputs,
|
65 |
+
outputs="image",
|
66 |
+
examples=[
|
67 |
+
[method_options, 1500, 12, 2, 30]
|
68 |
+
],
|
69 |
+
title="Manifold Learning Comparison",
|
70 |
+
description="Compare manifold learning methods on the S-curve dataset."
|
71 |
+
).launch()
|