Spaces:
Build error
Build error
import mmcv | |
import os | |
import os.path as osp | |
import pickle | |
import shutil | |
import tempfile | |
import time | |
import torch | |
import torch.distributed as dist | |
from mmcv.runner import get_dist_info | |
import random | |
import numpy as np | |
import subprocess | |
def set_seed(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# torch.set_deterministic(True) | |
def time_synchronized(): | |
torch.cuda.synchronize() if torch.cuda.is_available() else None | |
return time.time() | |
def setup_for_distributed(is_master): | |
"""This function disables printing when not in master process.""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def init_distributed_mode(port = None, master_port=29500): | |
"""Initialize slurm distributed training environment. | |
If argument ``port`` is not specified, then the master port will be system | |
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system | |
environment variable, then a default port ``29500`` will be used. | |
Args: | |
backend (str): Backend of torch.distributed. | |
port (int, optional): Master port. Defaults to None. | |
""" | |
dist_backend = 'nccl' | |
proc_id = int(os.environ['SLURM_PROCID']) | |
ntasks = int(os.environ['SLURM_NTASKS']) | |
node_list = os.environ['SLURM_NODELIST'] | |
num_gpus = torch.cuda.device_count() | |
torch.cuda.set_device(proc_id % num_gpus) | |
addr = subprocess.getoutput( | |
f'scontrol show hostname {node_list} | head -n1') | |
# specify master port | |
if port is not None: | |
os.environ['MASTER_PORT'] = str(port) | |
elif 'MASTER_PORT' in os.environ: | |
pass # use MASTER_PORT in the environment variable | |
else: | |
# 29500 is torch.distributed default port | |
os.environ['MASTER_PORT'] = str(master_port) | |
# use MASTER_ADDR in the environment variable if it already exists | |
if 'MASTER_ADDR' not in os.environ: | |
os.environ['MASTER_ADDR'] = addr | |
os.environ['WORLD_SIZE'] = str(ntasks) | |
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) | |
os.environ['RANK'] = str(proc_id) | |
dist.init_process_group(backend=dist_backend) | |
distributed = True | |
gpu_idx = proc_id % num_gpus | |
return distributed, gpu_idx | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def get_process_groups(): | |
world_size = int(os.environ['WORLD_SIZE']) | |
ranks = list(range(world_size)) | |
num_gpus = torch.cuda.device_count() | |
num_nodes = world_size // num_gpus | |
if world_size % num_gpus != 0: | |
raise NotImplementedError('Not implemented for node not fully used.') | |
groups = [] | |
for node_idx in range(num_nodes): | |
groups.append(ranks[node_idx*num_gpus : (node_idx+1)*num_gpus]) | |
process_groups = [torch.distributed.new_group(group) for group in groups] | |
return process_groups | |
def get_group_idx(): | |
num_gpus = torch.cuda.device_count() | |
proc_id = get_rank() | |
group_idx = proc_id // num_gpus | |
return group_idx | |
def is_main_process(): | |
return get_rank() == 0 | |
def cleanup(): | |
dist.destroy_process_group() | |
def collect_results(result_part, size, tmpdir=None): | |
rank, world_size = get_dist_info() | |
# create a tmp dir if it is not specified | |
if tmpdir is None: | |
MAX_LEN = 512 | |
# 32 is whitespace | |
dir_tensor = torch.full((MAX_LEN, ), | |
32, | |
dtype=torch.uint8, | |
device='cuda') | |
if rank == 0: | |
tmpdir = tempfile.mkdtemp() | |
tmpdir = torch.tensor( | |
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') | |
dir_tensor[:len(tmpdir)] = tmpdir | |
dist.broadcast(dir_tensor, 0) | |
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() | |
else: | |
mmcv.mkdir_or_exist(tmpdir) | |
# dump the part result to the dir | |
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) | |
dist.barrier() | |
# collect all parts | |
if rank != 0: | |
return None | |
else: | |
# load results of all parts from tmp dir | |
part_list = [] | |
for i in range(world_size): | |
part_file = osp.join(tmpdir, f'part_{i}.pkl') | |
part_list.append(mmcv.load(part_file)) | |
# sort the results | |
ordered_results = [] | |
for res in zip(*part_list): | |
ordered_results.extend(list(res)) | |
# the dataloader may pad some samples | |
ordered_results = ordered_results[:size] | |
# remove tmp dir | |
shutil.rmtree(tmpdir) | |
return ordered_results | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: | |
Any picklable object | |
Returns: | |
data_list(list): | |
List of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to('cuda') | |
# obtain Tensor size of each rank | |
local_size = torch.tensor([tensor.numel()], device='cuda') | |
size_list = [torch.tensor([0], device='cuda') for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append( | |
torch.empty((max_size, ), dtype=torch.uint8, device='cuda')) | |
if local_size != max_size: | |
padding = torch.empty( | |
size=(max_size - local_size, ), dtype=torch.uint8, device='cuda') | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |