onescotch
add huggingface implementation
2de1f98
raw
history blame
2.78 kB
import torch.nn as nn
from mmcv.cnn import ConvModule, xavier_init
from ..builder import NECKS
@NECKS.register_module()
class ChannelMapper(nn.Module):
r"""Channel Mapper to reduce/increase channels of backbone features.
This is used to reduce/increase channels of backbone features.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale).
kernel_size (int, optional): kernel_size for reducing channels (used
at each scale). Default: 3.
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: None.
act_cfg (dict, optional): Config dict for activation layer in
ConvModule. Default: dict(type='ReLU').
Example:
>>> import torch
>>> in_channels = [2, 3, 5, 7]
>>> scales = [340, 170, 84, 43]
>>> inputs = [torch.rand(1, c, s, s)
... for c, s in zip(in_channels, scales)]
>>> self = ChannelMapper(in_channels, 11, 3).eval()
>>> outputs = self.forward(inputs)
>>> for i in range(len(outputs)):
... print(f'outputs[{i}].shape = {outputs[i].shape}')
outputs[0].shape = torch.Size([1, 11, 340, 340])
outputs[1].shape = torch.Size([1, 11, 170, 170])
outputs[2].shape = torch.Size([1, 11, 84, 84])
outputs[3].shape = torch.Size([1, 11, 43, 43])
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU')):
super(ChannelMapper, self).__init__()
assert isinstance(in_channels, list)
self.convs = nn.ModuleList()
for in_channel in in_channels:
self.convs.append(
ConvModule(
in_channel,
out_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
# default init_weights for conv(msra) and norm in ConvModule
def init_weights(self):
"""Initialize the weights of ChannelMapper module."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
xavier_init(m, distribution='uniform')
def forward(self, inputs):
"""Forward function."""
assert len(inputs) == len(self.convs)
outs = [self.convs[i](inputs[i]) for i in range(len(inputs))]
return tuple(outs)