onescotch
add huggingface implementation
2de1f98
raw
history blame
No virus
30.7 kB
import numpy as np
import torch
import torch.nn as nn
import copy
import math
import warnings
from mmcv.cnn import build_upsample_layer, Linear, bias_init_with_prob, constant_init, normal_init
import torch.nn.functional as F
from mmcv.cnn import normal_init
from mmpose.core.evaluation import (keypoint_pck_accuracy,
keypoints_from_regression)
from mmpose.core.post_processing import fliplr_regression
from mmpose.models.builder import build_loss, HEADS, build_transformer
from mmpose.core.evaluation import pose_pck_accuracy
from mmpose.models.utils.transformer import inverse_sigmoid
from mmcv.cnn import Conv2d, build_activation_layer
from mmcv.cnn.bricks.transformer import Linear, FFN, build_positional_encoding
from mmcv.cnn import ConvModule
import torch.distributions as distributions
from .rle_regression_head import nets, nett, RealNVP, nets3d, nett3d
from easydict import EasyDict
from mmpose.models.losses.regression_loss import L1Loss
from mmpose.models.losses.rle_loss import RLELoss_poseur, RLEOHKMLoss
from config import cfg
from utils.human_models import smpl_x
from torch.distributions.utils import lazy_property
from torch.distributions import MultivariateNormal
def fliplr_rle_regression(regression,
regression_score,
flip_pairs,
center_mode='static',
center_x=0.5,
center_index=0):
"""Flip human joints horizontally.
Note:
batch_size: N
num_keypoint: K
Args:
regression (np.ndarray([..., K, C])): Coordinates of keypoints, where K
is the joint number and C is the dimension. Example shapes are:
- [N, K, C]: a batch of keypoints where N is the batch size.
- [N, T, K, C]: a batch of pose sequences, where T is the frame
number.
flip_pairs (list[tuple()]): Pairs of keypoints which are mirrored
(for example, left ear -- right ear).
center_mode (str): The mode to set the center location on the x-axis
to flip around. Options are:
- static: use a static x value (see center_x also)
- root: use a root joint (see center_index also)
center_x (float): Set the x-axis location of the flip center. Only used
when center_mode=static.
center_index (int): Set the index of the root joint, whose x location
will be used as the flip center. Only used when center_mode=root.
Returns:
tuple: Flipped human joints.
- regression_flipped (np.ndarray([..., K, C])): Flipped joints.
"""
assert regression.ndim >= 2, f'Invalid pose shape {regression.shape}'
allowed_center_mode = {'static', 'root'}
assert center_mode in allowed_center_mode, 'Get invalid center_mode ' \
f'{center_mode}, allowed choices are {allowed_center_mode}'
if center_mode == 'static':
x_c = center_x
elif center_mode == 'root':
assert regression.shape[-2] > center_index
x_c = regression[..., center_index:center_index + 1, 0]
regression_flipped = regression.copy()
regression_score_flipped = regression_score.copy()
# Swap left-right parts
for left, right in flip_pairs:
regression_flipped[..., left, :] = regression[..., right, :]
regression_flipped[..., right, :] = regression[..., left, :]
regression_score_flipped[..., left, :] = regression_score[..., right, :]
regression_score_flipped[..., right, :] = regression_score[..., left, :]
# Flip horizontally
regression_flipped[..., 0] = x_c * 2 - regression_flipped[..., 0]
return regression_flipped, regression_score_flipped
class Linear_with_norm(nn.Module):
def __init__(self, in_channel, out_channel, bias=True, norm=True):
super(Linear_with_norm, self).__init__()
self.bias = bias
self.norm = norm
self.linear = nn.Linear(in_channel, out_channel, bias)
nn.init.xavier_uniform_(self.linear.weight, gain=0.01)
def forward(self, x):
y = x.matmul(self.linear.weight.t())
if self.norm:
x_norm = torch.norm(x, dim=-1, keepdim=True)
y = y / x_norm
if self.bias:
y = y + self.linear.bias
return y
def deepapply(obj, fn):
r"""Applies `fn` to all tensors referenced in `obj`"""
if torch.is_tensor(obj):
obj = fn(obj)
elif isinstance(obj, dict):
for key, value in obj.items():
obj[key] = deepapply(value, fn)
elif isinstance(obj, list):
for i, value in enumerate(obj):
obj[i] = deepapply(value, fn)
elif isinstance(obj, tuple):
obj = tuple(
deepapply(value, fn)
for value in obj
)
elif hasattr(obj, '__dict__'):
deepapply(obj.__dict__, fn)
return obj
__init__ = MultivariateNormal.__init__
def init(self, *args, **kwargs):
__init__(self, *args, **kwargs)
self.__class__ = type(
self.__class__.__name__,
(self.__class__, nn.Module),
{},
)
nn.Module.__init__(self)
MultivariateNormal.__init__ = init
MultivariateNormal._apply = deepapply
@HEADS.register_module()
class Poseur_noise_sample(nn.Module):
"""
rle loss for transformer_utils
"""
def __init__(self,
in_channels,
num_queries=17,
num_reg_fcs=2,
positional_encoding=dict(
type='SinePositionalEncoding',
num_feats=128,
normalize=True),
transformer=None,
with_box_refine=False,
as_two_stage=False,
heatmap_size=[64, 48],
num_joints=17,
loss_coord_enc=None,
loss_coord_dec=None,
loss_hp_keypoint=None,
use_heatmap_loss=True,
train_cfg=None,
test_cfg=None,
use_udp=False,
):
super().__init__()
self.use_udp = use_udp
self.num_queries = num_queries
self.num_reg_fcs = num_reg_fcs
self.in_channels = in_channels
self.act_cfg = transformer.get('act_cfg', dict(type='ReLU', inplace=True))
self.activate = build_activation_layer(self.act_cfg)
self.positional_encoding = build_positional_encoding(positional_encoding)
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
if self.as_two_stage:
transformer['as_two_stage'] = self.as_two_stage
self.transformer = build_transformer(transformer)
self.embed_dims = self.transformer.embed_dims
assert 'num_feats' in positional_encoding
num_feats = positional_encoding['num_feats']
assert num_feats * 2 == self.embed_dims, 'embed_dims should' \
f' be exactly 2 times of num_feats. Found {self.embed_dims}' \
f' and {num_feats}.'
self.num_joints = num_joints
# self.num_joints = len(smpl_x.pos_joint_part['rhand'])
self.heatmap_size = heatmap_size
self.loss_coord_enc = build_loss(loss_coord_enc)
self.loss_coord_dec = build_loss(loss_coord_dec)
self.use_dec_rle_loss = isinstance(self.loss_coord_dec, RLELoss_poseur) or isinstance(self.loss_coord_dec,
RLEOHKMLoss)
self.use_heatmap_loss = use_heatmap_loss
if self.use_heatmap_loss:
self.loss_hp = build_loss(loss_hp_keypoint)
self.train_cfg = {} if train_cfg is None else train_cfg
self.test_cfg = {} if test_cfg is None else test_cfg
enc_prior = MultivariateNormal(torch.zeros(2), torch.eye(2))
dec_prior = MultivariateNormal(torch.zeros(2), torch.eye(2))
masks = torch.from_numpy(np.array([[0, 1], [1, 0]] * 3).astype(np.float32))
enc_prior3d = MultivariateNormal(torch.zeros(3), torch.eye(3))
dec_prior3d = MultivariateNormal(torch.zeros(3), torch.eye(3))
masks3d = torch.from_numpy(np.array([[0, 0, 1], [1, 1, 0]] * 3).astype(np.float32))
self.enc_flow2d = RealNVP(nets, nett, masks, enc_prior)
self.enc_flow3d = RealNVP(nets3d, nett3d, masks3d, enc_prior3d)
if self.use_dec_rle_loss:
self.dec_flow2d = RealNVP(nets, nett, masks, dec_prior)
self.dec_flow3d = RealNVP(nets3d, nett3d, masks3d, dec_prior3d)
self._init_layers()
def _init_layers(self):
"""Initialize classification branch and regression branch of head."""
fc_coord_branch = []
for _ in range(self.num_reg_fcs):
fc_coord_branch.append(Linear(self.embed_dims, self.embed_dims))
fc_coord_branch.append(nn.ReLU())
fc_coord_branch.append(Linear(self.embed_dims, 3))
fc_coord_branch = nn.Sequential(*fc_coord_branch)
if self.use_dec_rle_loss:
fc_sigma_branch = []
for _ in range(self.num_reg_fcs):
fc_sigma_branch.append(Linear(self.embed_dims, self.embed_dims))
fc_sigma_branch.append(Linear_with_norm(self.embed_dims, 3, norm=False))
fc_sigma_branch = nn.Sequential(*fc_sigma_branch)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
num_pred = self.transformer.decoder.num_layers
if self.with_box_refine:
self.fc_coord_branches = _get_clones(fc_coord_branch, num_pred)
self.fc_coord_output_branches = _get_clones(fc_coord_branch, num_pred)
if self.use_dec_rle_loss:
self.fc_sigma_branches = _get_clones(fc_sigma_branch, num_pred)
else:
self.fc_coord_branches = nn.ModuleList(
[fc_coord_branch for _ in range(num_pred)])
if isinstance(self.loss_coord_dec, RLELoss) or isinstance(self.loss_coord_dec, RLEOHKMLoss):
self.fc_sigma_branches = nn.ModuleList([fc_sigma_branch for _ in range(1)])
if self.as_two_stage:
self.query_embedding = None
else:
self.query_embedding = nn.Embedding(self.num_queries,
self.embed_dims * 2)
if self.use_heatmap_loss:
from mmcv.cnn import build_upsample_layer
# simplebaseline style
num_layers = 3
num_kernels = [4, 4, 4]
num_filters = [256, 256, 256]
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
if i == 0:
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=self.embed_dims,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
else:
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=planes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
self.in_channels = planes
self.deconv_layer = nn.Sequential(*layers)
self.final_layer = nn.Sequential(
ConvModule(
self.embed_dims,
self.num_joints,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=None,
act_cfg=None,
inplace=False)
)
@staticmethod
def _get_deconv_cfg(deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def init_weights(self):
"""Initialize weights of the DeformDETR head."""
self.transformer.init_weights()
# for m in [self.fc_coord_branches, self.fc_sigma_branches]:
for m in [self.fc_coord_branches]:
for mm in m:
if isinstance(mm, nn.Linear):
nn.init.xavier_uniform_(mm.weight, gain=0.01)
for m in [self.fc_coord_output_branches]:
for mm in m:
if isinstance(mm, nn.Linear):
nn.init.xavier_uniform_(mm.weight, gain=0.01)
if self.use_heatmap_loss:
for _, m in self.deconv_layer.named_modules():
if isinstance(m, nn.ConvTranspose2d):
normal_init(m, std=0.001)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
for m in self.final_layer.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
def forward(self, mlvl_feats, coord_init=None, query_init=None):
batch_size = mlvl_feats[0].size(0)
img_w, img_h = self.train_cfg['image_size']
img_masks = mlvl_feats[0].new_ones(
(batch_size, img_h, img_w))
for img_id in range(batch_size):
img_masks[img_id, :img_h, :img_w] = 0
mlvl_masks = []
mlvl_positional_encodings = []
for feat in mlvl_feats:
mlvl_masks.append(F.interpolate(img_masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0))
mlvl_positional_encodings.append(
self.positional_encoding(mlvl_masks[-1]))
query_embeds = None
if not self.as_two_stage:
query_embeds = self.query_embedding.weight
memory, spatial_shapes, level_start_index, hs, init_reference, inter_references, \
enc_outputs = self.transformer(
mlvl_feats,
mlvl_masks,
query_embeds,
mlvl_positional_encodings,
reg_branches=self.fc_coord_branches if self.with_box_refine else None, # noqa:E501
cls_branches=None, # noqa:E501
coord_init=coord_init,
query_init=query_init,
)
hs = hs.permute(0, 2, 1, 3)
outputs_coords = []
dec_outputs = EasyDict(pred_jts=outputs_coords, feat=hs)
return enc_outputs, dec_outputs
def get_loss(self, enc_output, dec_output, coord_target, coord_target_weight, hp_target, hp_target_weight):
losses = dict()
if self.as_two_stage and enc_output is not None:
enc_rle_loss = self.get_enc_rle_loss(enc_output, coord_target, coord_target_weight)
losses.update(enc_rle_loss)
dec_rle_loss = self.get_dec_rle_loss(dec_output, coord_target, coord_target_weight)
losses.update(dec_rle_loss)
return losses
def get_enc_rle_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss_coord_enc, nn.Sequential)
assert target.dim() == 3 and target_weight.dim() == 3
BATCH_SIZE = output.sigma.size(0)
gt_uvd = target.reshape(output.pred_jts.shape)
gt_uvd_weight = target_weight.reshape(output.pred_jts.shape)
gt_3d_mask = gt_uvd_weight[:, :, 2].reshape(-1)
assert output.pred_jts.shape == output.sigma.shape, (output.pred_jts.shape, output.sigma.shape)
bar_mu = (output.pred_jts - gt_uvd) / output.sigma
bar_mu = bar_mu.reshape(-1, 3)
bar_mu_3d = bar_mu[gt_3d_mask > 0]
bar_mu_2d = bar_mu[gt_3d_mask < 1][:, :2]
# (B, K, 3)
log_phi_3d = self.enc_flow3d.log_prob(bar_mu_3d)
log_phi_2d = self.enc_flow2d.log_prob(bar_mu_2d)
log_phi = torch.zeros_like(bar_mu[:, 0])
# print(gt_3d_mask)
log_phi[gt_3d_mask > 0] = log_phi_3d
log_phi[gt_3d_mask < 1] = log_phi_2d
log_phi = log_phi.reshape(BATCH_SIZE, self.num_joints, 1)
output.nf_loss = torch.log(output.sigma) - log_phi
losses['enc_rle_loss'] = self.loss_coord_enc(output, target, target_weight)
return losses
def get_enc_rle_loss_old(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss_coord_enc, nn.Sequential)
assert target.dim() == 3 and target_weight.dim() == 3
BATCH_SIZE = output.sigma.size(0)
gt_uv = target.reshape(output.pred_jts.shape)
bar_mu = (output.pred_jts - gt_uv) / output.sigma
# (B, K, 1)
log_phi = self.enc_flow.log_prob(bar_mu.reshape(-1, 2)).reshape(BATCH_SIZE, self.num_joints, 1)
output.nf_loss = torch.log(output.sigma) - log_phi
losses['enc_rle_loss'] = self.loss_coord_enc(output, target, target_weight)
return losses
def get_dec_rle_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss_coord_dec, nn.Sequential)
assert target.dim() == 3 and target_weight.dim() == 3
target = target.repeat(1, self.transformer.num_noise_sample + 1, 1)
target_weight = target_weight.repeat(1, self.transformer.num_noise_sample + 1, 1)
if self.with_box_refine:
if self.use_dec_rle_loss:
for i in range(len(output.pred_jts)):
pred_jts, sigma = output.pred_jts[i], output.sigma[i]
output_i = EasyDict(
pred_jts=pred_jts,
sigma=sigma
)
BATCH_SIZE = output_i.sigma.size(0)
gt_uvd = target.reshape(output_i.pred_jts.shape)
gt_uvd_weight = target_weight.reshape(pred_jts.shape)
gt_3d_mask = gt_uvd_weight[:, :, 2].reshape(-1)
assert pred_jts.shape == sigma.shape, (pred_jts.shape, sigma.shape)
bar_mu = (output_i.pred_jts - gt_uvd) / output_i.sigma
bar_mu = bar_mu.reshape(-1, 3)
bar_mu_3d = bar_mu[gt_3d_mask > 0]
bar_mu_2d = bar_mu[gt_3d_mask < 1][:, :2]
# (B, K, 3)
log_phi_3d = self.dec_flow3d.log_prob(bar_mu_3d)
log_phi_2d = self.dec_flow2d.log_prob(bar_mu_2d)
log_phi = torch.zeros_like(bar_mu[:, 0])
log_phi[gt_3d_mask > 0] = log_phi_3d
log_phi[gt_3d_mask < 1] = log_phi_2d
log_phi = log_phi.reshape(BATCH_SIZE, self.num_joints * (self.transformer.num_noise_sample + 1), 1)
output_i.nf_loss = torch.log(output_i.sigma) - log_phi
losses['dec_rle_loss_{}'.format(i)] = self.loss_coord_dec(output_i, target, target_weight)
else:
for i, pred_jts in enumerate(output.pred_jts):
losses['dec_rle_loss_{}'.format(i)] = self.loss_coord_dec(pred_jts, target, target_weight)
else:
if self.use_dec_rle_loss:
BATCH_SIZE = output.sigma.size(0)
gt_uv = target.reshape(output.pred_jts.shape)
bar_mu = (output.pred_jts - gt_uv) / output.sigma
# (B, K, 1)
log_phi = self.dec_flow.log_prob(bar_mu.reshape(-1, 2)).reshape(BATCH_SIZE, self.num_joints, 1)
output.nf_loss = torch.log(output.sigma) - log_phi
losses['dec_rle_loss'] = self.loss_coord_dec(output, target, target_weight) * 0
else:
losses['dec_rle_loss'] = self.loss_coord_dec(output.pred_jts, target + 0.5, target_weight) * 0
return losses
def get_hp_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
heatmaps height: H
heatmaps weight: W
Args:
output (torch.Tensor[NxKxHxW]): Output heatmaps.
target (torch.Tensor[NxKxHxW]): Target heatmaps.
target_weight (torch.Tensor[NxKx1]):
Weights across different joint types.
"""
losses = dict()
if isinstance(self.loss_hp, nn.Sequential):
if not isinstance(output, dict):
assert len(self.loss_hp) == output.size(0)
assert target.dim() == 5 and target_weight.dim() == 4
num_hp_layers = output.size(0)
for i in range(num_hp_layers):
target_i = target[:, i, :, :, :]
target_weight_i = target_weight[:, i, :, :]
losses['mse_loss_{}'.format(i)] = self.loss_hp[i](output[i], target_i, target_weight_i)
else:
out_hp_backbone = output['backbone']
num_hp_layers = out_hp_backbone.size(0)
for i in range(num_hp_layers):
target_i = target[:, i, :, :, :]
target_weight_i = target_weight[:, i, :, :]
losses['mse_loss_backbone_{}'.format(i)] = self.loss_hp[i](out_hp_backbone[i], target_i,
target_weight_i)
out_hp_enc = output['enc']
for lvl in range(len(out_hp_enc)):
if lvl == 2 or lvl == 5:
# if lvl == 5:
for i in range(3):
target_i = target[:, i + 1, :, :, :]
target_weight_i = target_weight[:, i + 1, :, :]
# losses['reg_loss'] += self.loss(output[i], target, target_weight).sum()
if lvl == 2:
loss_weight = 0.1
elif lvl == 5:
loss_weight = 1.0
losses['mse_loss_enc_layer{}_c{}'.format(lvl, i + 3)] = loss_weight * self.loss_hp[i + 1](
out_hp_enc[lvl][i], target_i, target_weight_i)
else:
assert target.dim() == 4 and target_weight.dim() == 3
losses['mse_loss'] = self.loss_hp(output, target, target_weight)
return losses
def get_accuracy(self, enc_output, dec_output, coord_target, coord_target_weight, hp_target, hp_target_weight):
"""Calculate accuracy for top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
accuracy = dict()
# coord_output = output["coord"]
if self.as_two_stage and enc_output is not None:
coord_output = enc_output.pred_jts
N = coord_output.shape[0]
_, avg_acc, cnt = keypoint_pck_accuracy(
coord_output.detach().cpu().numpy(),
coord_target.detach().cpu().numpy(),
coord_target_weight[:, :, 0].detach().cpu().numpy() > 0,
thr=0.05,
normalize=np.ones((N, 2), dtype=np.float32))
accuracy['enc_coord_acc'] = avg_acc
coord_output = dec_output.pred_jts
if coord_output.dim() == 4:
coord_output = coord_output[-1]
N = coord_output.shape[0]
if not self.use_dec_rle_loss:
coord_target += 0.5
# self.num_joints
_, avg_acc, cnt = keypoint_pck_accuracy(
coord_output[:, :self.num_joints].detach().cpu().numpy(),
coord_target.detach().cpu().numpy(),
coord_target_weight[:, :, 0].detach().cpu().numpy() > 0,
thr=0.05,
normalize=np.ones((N, 2), dtype=np.float32))
accuracy['dec_coord_acc'] = avg_acc
# if self.use_heatmap_loss and self.use_multi_stage_memory:
# assert hp_target.dim() == 5 and hp_target_weight.dim() == 4
# _, avg_acc, _ = pose_pck_accuracy(
# hp_output_backbone[0].detach().cpu().numpy(),
# hp_target[:, 0, ...].detach().cpu().numpy(),
# hp_target_weight[:, 0,
# ...].detach().cpu().numpy().squeeze(-1) > 0)
# accuracy['hp_acc_backbone'] = float(avg_acc)
# _, avg_acc, _ = pose_pck_accuracy(
# hp_output_enc[-1][0].detach().cpu().numpy(),
# hp_target[:, 1, ...].detach().cpu().numpy(),
# hp_target_weight[:, 1,
# ...].detach().cpu().numpy().squeeze(-1) > 0)
# accuracy['hp_acc_enc'] = float(avg_acc)
# else:
if self.use_heatmap_loss:
hp_output = dec_output["hp"]
_, avg_acc, _ = pose_pck_accuracy(
hp_output.detach().cpu().numpy(),
hp_target.detach().cpu().numpy(),
hp_target_weight.detach().cpu().numpy().squeeze(-1) > 0)
accuracy['hp_acc'] = float(avg_acc)
return accuracy
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output_regression (np.ndarray): Output regression.
Args:
x (torch.Tensor[N, K, 2]): Input features.
flip_pairs (None | list[tuple()):
Pairs of keypoints which are mirrored.
"""
output_enc, output_dec = self.forward(x)
output_regression, output_regression_score = output_dec.pred_jts.detach().cpu().numpy(), output_dec.maxvals.detach().cpu().numpy()
output_sigma = output_dec.sigma.detach().cpu().numpy()
output_sigma = output_sigma[-1]
output_regression_score = np.concatenate([output_regression_score, output_sigma], axis=2)
if output_regression.ndim == 4:
output_regression = output_regression[-1]
if flip_pairs is not None:
output_regression, output_regression_score = fliplr_rle_regression(
output_regression, output_regression_score, flip_pairs)
return output_regression, output_regression_score
def decode_keypoints(self, img_metas, output_regression, output_regression_score, img_size):
"""Decode keypoints from output regression.
Args:
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
output_regression (np.ndarray[N, K, 2]): model
predicted regression vector.
img_size (tuple(img_width, img_height)): model input image size.
"""
batch_size = len(img_metas)
if 'bbox_id' in img_metas[0]:
bbox_ids = []
else:
bbox_ids = None
c = np.zeros((batch_size, 2), dtype=np.float32)
s = np.zeros((batch_size, 2), dtype=np.float32)
image_paths = []
score = np.ones(batch_size)
for i in range(batch_size):
c[i, :] = img_metas[i]['center']
s[i, :] = img_metas[i]['scale']
image_paths.append(img_metas[i]['image_file'])
if 'bbox_score' in img_metas[i]:
score[i] = np.array(img_metas[i]['bbox_score']).reshape(-1)
if bbox_ids is not None:
bbox_ids.append(img_metas[i]['bbox_id'])
preds, maxvals = keypoints_from_regression(output_regression, c, s,
img_size)
all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
all_preds[:, :, 0:2] = preds[:, :, 0:2]
# all_preds[:, :, 2:3] = maxvals
all_preds[:, :, 2:3] = output_regression_score
all_boxes[:, 0:2] = c[:, 0:2]
all_boxes[:, 2:4] = s[:, 0:2]
all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
all_boxes[:, 5] = score
result = {}
result['preds'] = all_preds
result['boxes'] = all_boxes
result['image_paths'] = image_paths
result['bbox_ids'] = bbox_ids
return result