Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from mmcv.cnn import ConvModule, build_conv_layer, build_norm_layer | |
from mmcv.cnn.bricks import ContextBlock | |
from mmcv.utils.parrots_wrapper import _BatchNorm | |
from ..builder import BACKBONES | |
from .base_backbone import BaseBackbone | |
class ViPNAS_Bottleneck(nn.Module): | |
"""Bottleneck block for ViPNAS_ResNet. | |
Args: | |
in_channels (int): Input channels of this block. | |
out_channels (int): Output channels of this block. | |
expansion (int): The ratio of ``out_channels/mid_channels`` where | |
``mid_channels`` is the input/output channels of conv2. Default: 4. | |
stride (int): stride of the block. Default: 1 | |
dilation (int): dilation of convolution. Default: 1 | |
downsample (nn.Module): downsample operation on identity branch. | |
Default: None. | |
style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the | |
stride-two layer is the 3x3 conv layer, otherwise the stride-two | |
layer is the first 1x1 conv layer. Default: "pytorch". | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
conv_cfg (dict): dictionary to construct and config conv layer. | |
Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
kernel_size (int): kernel size of conv2 searched in ViPANS. | |
groups (int): group number of conv2 searched in ViPNAS. | |
attention (bool): whether to use attention module in the end of | |
the block. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
expansion=4, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
kernel_size=3, | |
groups=1, | |
attention=False): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
super().__init__() | |
assert style in ['pytorch', 'caffe'] | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.expansion = expansion | |
assert out_channels % expansion == 0 | |
self.mid_channels = out_channels // expansion | |
self.stride = stride | |
self.dilation = dilation | |
self.style = style | |
self.with_cp = with_cp | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
if self.style == 'pytorch': | |
self.conv1_stride = 1 | |
self.conv2_stride = stride | |
else: | |
self.conv1_stride = stride | |
self.conv2_stride = 1 | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, self.mid_channels, postfix=1) | |
self.norm2_name, norm2 = build_norm_layer( | |
norm_cfg, self.mid_channels, postfix=2) | |
self.norm3_name, norm3 = build_norm_layer( | |
norm_cfg, out_channels, postfix=3) | |
self.conv1 = build_conv_layer( | |
conv_cfg, | |
in_channels, | |
self.mid_channels, | |
kernel_size=1, | |
stride=self.conv1_stride, | |
bias=False) | |
self.add_module(self.norm1_name, norm1) | |
self.conv2 = build_conv_layer( | |
conv_cfg, | |
self.mid_channels, | |
self.mid_channels, | |
kernel_size=kernel_size, | |
stride=self.conv2_stride, | |
padding=kernel_size // 2, | |
groups=groups, | |
dilation=dilation, | |
bias=False) | |
self.add_module(self.norm2_name, norm2) | |
self.conv3 = build_conv_layer( | |
conv_cfg, | |
self.mid_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False) | |
self.add_module(self.norm3_name, norm3) | |
if attention: | |
self.attention = ContextBlock(out_channels, | |
max(1.0 / 16, 16.0 / out_channels)) | |
else: | |
self.attention = None | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
def norm1(self): | |
"""nn.Module: the normalization layer named "norm1" """ | |
return getattr(self, self.norm1_name) | |
def norm2(self): | |
"""nn.Module: the normalization layer named "norm2" """ | |
return getattr(self, self.norm2_name) | |
def norm3(self): | |
"""nn.Module: the normalization layer named "norm3" """ | |
return getattr(self, self.norm3_name) | |
def forward(self, x): | |
"""Forward function.""" | |
def _inner_forward(x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.norm3(out) | |
if self.attention is not None: | |
out = self.attention(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
def get_expansion(block, expansion=None): | |
"""Get the expansion of a residual block. | |
The block expansion will be obtained by the following order: | |
1. If ``expansion`` is given, just return it. | |
2. If ``block`` has the attribute ``expansion``, then return | |
``block.expansion``. | |
3. Return the default value according the the block type: | |
4 for ``ViPNAS_Bottleneck``. | |
Args: | |
block (class): The block class. | |
expansion (int | None): The given expansion ratio. | |
Returns: | |
int: The expansion of the block. | |
""" | |
if isinstance(expansion, int): | |
assert expansion > 0 | |
elif expansion is None: | |
if hasattr(block, 'expansion'): | |
expansion = block.expansion | |
elif issubclass(block, ViPNAS_Bottleneck): | |
expansion = 1 | |
else: | |
raise TypeError(f'expansion is not specified for {block.__name__}') | |
else: | |
raise TypeError('expansion must be an integer or None') | |
return expansion | |
class ViPNAS_ResLayer(nn.Sequential): | |
"""ViPNAS_ResLayer to build ResNet style backbone. | |
Args: | |
block (nn.Module): Residual block used to build ViPNAS ResLayer. | |
num_blocks (int): Number of blocks. | |
in_channels (int): Input channels of this block. | |
out_channels (int): Output channels of this block. | |
expansion (int, optional): The expansion for BasicBlock/Bottleneck. | |
If not specified, it will firstly be obtained via | |
``block.expansion``. If the block has no attribute "expansion", | |
the following default values will be used: 1 for BasicBlock and | |
4 for Bottleneck. Default: None. | |
stride (int): stride of the first block. Default: 1. | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False | |
conv_cfg (dict): dictionary to construct and config conv layer. | |
Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
downsample_first (bool): Downsample at the first block or last block. | |
False for Hourglass, True for ResNet. Default: True | |
kernel_size (int): Kernel Size of the corresponding convolution layer | |
searched in the block. | |
groups (int): Group number of the corresponding convolution layer | |
searched in the block. | |
attention (bool): Whether to use attention module in the end of the | |
block. | |
""" | |
def __init__(self, | |
block, | |
num_blocks, | |
in_channels, | |
out_channels, | |
expansion=None, | |
stride=1, | |
avg_down=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
downsample_first=True, | |
kernel_size=3, | |
groups=1, | |
attention=False, | |
**kwargs): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
self.block = block | |
self.expansion = get_expansion(block, expansion) | |
downsample = None | |
if stride != 1 or in_channels != out_channels: | |
downsample = [] | |
conv_stride = stride | |
if avg_down and stride != 1: | |
conv_stride = 1 | |
downsample.append( | |
nn.AvgPool2d( | |
kernel_size=stride, | |
stride=stride, | |
ceil_mode=True, | |
count_include_pad=False)) | |
downsample.extend([ | |
build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=conv_stride, | |
bias=False), | |
build_norm_layer(norm_cfg, out_channels)[1] | |
]) | |
downsample = nn.Sequential(*downsample) | |
layers = [] | |
if downsample_first: | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
expansion=self.expansion, | |
stride=stride, | |
downsample=downsample, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
kernel_size=kernel_size, | |
groups=groups, | |
attention=attention, | |
**kwargs)) | |
in_channels = out_channels | |
for _ in range(1, num_blocks): | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
expansion=self.expansion, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
kernel_size=kernel_size, | |
groups=groups, | |
attention=attention, | |
**kwargs)) | |
else: # downsample_first=False is for HourglassModule | |
for i in range(0, num_blocks - 1): | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
expansion=self.expansion, | |
stride=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
kernel_size=kernel_size, | |
groups=groups, | |
attention=attention, | |
**kwargs)) | |
layers.append( | |
block( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
expansion=self.expansion, | |
stride=stride, | |
downsample=downsample, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
kernel_size=kernel_size, | |
groups=groups, | |
attention=attention, | |
**kwargs)) | |
super().__init__(*layers) | |
class ViPNAS_ResNet(BaseBackbone): | |
"""ViPNAS_ResNet backbone. | |
"ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search" | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2105.10154>`__ . | |
Args: | |
depth (int): Network depth, from {18, 34, 50, 101, 152}. | |
in_channels (int): Number of input image channels. Default: 3. | |
num_stages (int): Stages of the network. Default: 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
Default: ``(1, 2, 2, 2)``. | |
dilations (Sequence[int]): Dilation of each stage. | |
Default: ``(1, 1, 1, 1)``. | |
out_indices (Sequence[int]): Output from which stages. If only one | |
stage is specified, a single tensor (feature map) is returned, | |
otherwise multiple stages are specified, a tuple of tensors will | |
be returned. Default: ``(3, )``. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. | |
Default: False. | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Default: -1. | |
conv_cfg (dict | None): The config dict for conv layers. Default: None. | |
norm_cfg (dict): The config dict for norm layers. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
zero_init_residual (bool): Whether to use zero init for last norm layer | |
in resblocks to let them behave as identity. Default: True. | |
wid (list(int)): Searched width config for each stage. | |
expan (list(int)): Searched expansion ratio config for each stage. | |
dep (list(int)): Searched depth config for each stage. | |
ks (list(int)): Searched kernel size config for each stage. | |
group (list(int)): Searched group number config for each stage. | |
att (list(bool)): Searched attention config for each stage. | |
""" | |
arch_settings = { | |
50: ViPNAS_Bottleneck, | |
} | |
def __init__(self, | |
depth, | |
in_channels=3, | |
num_stages=4, | |
strides=(1, 2, 2, 2), | |
dilations=(1, 1, 1, 1), | |
out_indices=(3, ), | |
style='pytorch', | |
deep_stem=False, | |
avg_down=False, | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=False, | |
with_cp=False, | |
zero_init_residual=True, | |
wid=[48, 80, 160, 304, 608], | |
expan=[None, 1, 1, 1, 1], | |
dep=[None, 4, 6, 7, 3], | |
ks=[7, 3, 5, 5, 5], | |
group=[None, 16, 16, 16, 16], | |
att=[None, True, False, True, True]): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
super().__init__() | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for resnet') | |
self.depth = depth | |
self.stem_channels = dep[0] | |
self.num_stages = num_stages | |
assert 1 <= num_stages <= 4 | |
self.strides = strides | |
self.dilations = dilations | |
assert len(strides) == len(dilations) == num_stages | |
self.out_indices = out_indices | |
assert max(out_indices) < num_stages | |
self.style = style | |
self.deep_stem = deep_stem | |
self.avg_down = avg_down | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.with_cp = with_cp | |
self.norm_eval = norm_eval | |
self.zero_init_residual = zero_init_residual | |
self.block = self.arch_settings[depth] | |
self.stage_blocks = dep[1:1 + num_stages] | |
self._make_stem_layer(in_channels, wid[0], ks[0]) | |
self.res_layers = [] | |
_in_channels = wid[0] | |
for i, num_blocks in enumerate(self.stage_blocks): | |
expansion = get_expansion(self.block, expan[i + 1]) | |
_out_channels = wid[i + 1] * expansion | |
stride = strides[i] | |
dilation = dilations[i] | |
res_layer = self.make_res_layer( | |
block=self.block, | |
num_blocks=num_blocks, | |
in_channels=_in_channels, | |
out_channels=_out_channels, | |
expansion=expansion, | |
stride=stride, | |
dilation=dilation, | |
style=self.style, | |
avg_down=self.avg_down, | |
with_cp=with_cp, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
kernel_size=ks[i + 1], | |
groups=group[i + 1], | |
attention=att[i + 1]) | |
_in_channels = _out_channels | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, res_layer) | |
self.res_layers.append(layer_name) | |
self._freeze_stages() | |
self.feat_dim = res_layer[-1].out_channels | |
def make_res_layer(self, **kwargs): | |
"""Make a ViPNAS ResLayer.""" | |
return ViPNAS_ResLayer(**kwargs) | |
def norm1(self): | |
"""nn.Module: the normalization layer named "norm1" """ | |
return getattr(self, self.norm1_name) | |
def _make_stem_layer(self, in_channels, stem_channels, kernel_size): | |
"""Make stem layer.""" | |
if self.deep_stem: | |
self.stem = nn.Sequential( | |
ConvModule( | |
in_channels, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True), | |
ConvModule( | |
stem_channels // 2, | |
stem_channels // 2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True), | |
ConvModule( | |
stem_channels // 2, | |
stem_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
inplace=True)) | |
else: | |
self.conv1 = build_conv_layer( | |
self.conv_cfg, | |
in_channels, | |
stem_channels, | |
kernel_size=kernel_size, | |
stride=2, | |
padding=kernel_size // 2, | |
bias=False) | |
self.norm1_name, norm1 = build_norm_layer( | |
self.norm_cfg, stem_channels, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
def _freeze_stages(self): | |
"""Freeze parameters.""" | |
if self.frozen_stages >= 0: | |
if self.deep_stem: | |
self.stem.eval() | |
for param in self.stem.parameters(): | |
param.requires_grad = False | |
else: | |
self.norm1.eval() | |
for m in [self.conv1, self.norm1]: | |
for param in m.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
m = getattr(self, f'layer{i}') | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def init_weights(self, pretrained=None): | |
"""Initialize model weights.""" | |
super().init_weights(pretrained) | |
if pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight, std=0.001) | |
for name, _ in m.named_parameters(): | |
if name in ['bias']: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
"""Forward function.""" | |
if self.deep_stem: | |
x = self.stem(x) | |
else: | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
outs = [] | |
for i, layer_name in enumerate(self.res_layers): | |
res_layer = getattr(self, layer_name) | |
x = res_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
return tuple(outs) | |
def train(self, mode=True): | |
"""Convert the model into training mode.""" | |
super().train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |