Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import logging | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, constant_init, kaiming_init | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from .base_backbone import BaseBackbone | |
from .utils import InvertedResidual, load_checkpoint | |
class MobileNetV3(BaseBackbone): | |
"""MobileNetV3 backbone. | |
Args: | |
arch (str): Architecture of mobilnetv3, from {small, big}. | |
Default: small. | |
conv_cfg (dict): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
out_indices (None or Sequence[int]): Output from which stages. | |
Default: (-1, ), which means output tensors from final stage. | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save | |
some memory while slowing down the training speed. | |
Default: False. | |
""" | |
# Parameters to build each block: | |
# [kernel size, mid channels, out channels, with_se, act type, stride] | |
arch_settings = { | |
'small': [[3, 16, 16, True, 'ReLU', 2], | |
[3, 72, 24, False, 'ReLU', 2], | |
[3, 88, 24, False, 'ReLU', 1], | |
[5, 96, 40, True, 'HSwish', 2], | |
[5, 240, 40, True, 'HSwish', 1], | |
[5, 240, 40, True, 'HSwish', 1], | |
[5, 120, 48, True, 'HSwish', 1], | |
[5, 144, 48, True, 'HSwish', 1], | |
[5, 288, 96, True, 'HSwish', 2], | |
[5, 576, 96, True, 'HSwish', 1], | |
[5, 576, 96, True, 'HSwish', 1]], | |
'big': [[3, 16, 16, False, 'ReLU', 1], | |
[3, 64, 24, False, 'ReLU', 2], | |
[3, 72, 24, False, 'ReLU', 1], | |
[5, 72, 40, True, 'ReLU', 2], | |
[5, 120, 40, True, 'ReLU', 1], | |
[5, 120, 40, True, 'ReLU', 1], | |
[3, 240, 80, False, 'HSwish', 2], | |
[3, 200, 80, False, 'HSwish', 1], | |
[3, 184, 80, False, 'HSwish', 1], | |
[3, 184, 80, False, 'HSwish', 1], | |
[3, 480, 112, True, 'HSwish', 1], | |
[3, 672, 112, True, 'HSwish', 1], | |
[5, 672, 160, True, 'HSwish', 1], | |
[5, 672, 160, True, 'HSwish', 2], | |
[5, 960, 160, True, 'HSwish', 1]] | |
} # yapf: disable | |
def __init__(self, | |
arch='small', | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
out_indices=(-1, ), | |
frozen_stages=-1, | |
norm_eval=False, | |
with_cp=False): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
super().__init__() | |
assert arch in self.arch_settings | |
for index in out_indices: | |
if index not in range(-len(self.arch_settings[arch]), | |
len(self.arch_settings[arch])): | |
raise ValueError('the item in out_indices must in ' | |
f'range(0, {len(self.arch_settings[arch])}). ' | |
f'But received {index}') | |
if frozen_stages not in range(-1, len(self.arch_settings[arch])): | |
raise ValueError('frozen_stages must be in range(-1, ' | |
f'{len(self.arch_settings[arch])}). ' | |
f'But received {frozen_stages}') | |
self.arch = arch | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.in_channels = 16 | |
self.conv1 = ConvModule( | |
in_channels=3, | |
out_channels=self.in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
act_cfg=dict(type='HSwish')) | |
self.layers = self._make_layer() | |
self.feat_dim = self.arch_settings[arch][-1][2] | |
def _make_layer(self): | |
layers = [] | |
layer_setting = self.arch_settings[self.arch] | |
for i, params in enumerate(layer_setting): | |
(kernel_size, mid_channels, out_channels, with_se, act, | |
stride) = params | |
if with_se: | |
se_cfg = dict( | |
channels=mid_channels, | |
ratio=4, | |
act_cfg=(dict(type='ReLU'), dict(type='HSigmoid'))) | |
else: | |
se_cfg = None | |
layer = InvertedResidual( | |
in_channels=self.in_channels, | |
out_channels=out_channels, | |
mid_channels=mid_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
se_cfg=se_cfg, | |
with_expand_conv=True, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=dict(type=act), | |
with_cp=self.with_cp) | |
self.in_channels = out_channels | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, layer) | |
layers.append(layer_name) | |
return layers | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = logging.getLogger() | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
x = self.conv1(x) | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices or \ | |
i - len(self.layers) in self.out_indices: | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
return tuple(outs) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
layer = getattr(self, f'layer{i}') | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def train(self, mode=True): | |
super().train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, _BatchNorm): | |
m.eval() | |