image-search / wit_index.py
cahya's picture
remove back the pickle5, clean little bit the requirements
b7ac871
raw
history blame
1.63 kB
import pickle
# Used to create the dense document vectors.
import torch
from sentence_transformers import SentenceTransformer
import datasets
# Used to create and store the Faiss index.
import faiss
import numpy as np
class WitIndex:
"""
WitIndex is a class to search the wiki snippets from the given text. It can also return link to the
wiki page or the image.
"""
wit_dataset = None
def __init__(self, wit_index_path: str, model_name: str, wit_dataset_path: str, gpu=True):
self.index = faiss.read_index(wit_index_path)
self.model = SentenceTransformer(model_name)
if WitIndex.wit_dataset is None:
WitIndex.wit_dataset = pickle.load(open(wit_dataset_path, "rb"))
print(f"Gpu: {gpu}")
if gpu and torch.cuda.is_available():
print("Cuda is available")
self.model = self.model.to(torch.device("cuda"))
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
def search(self, text, top_k=6):
print(f"> Search: {text}")
embedding = self.model.encode(text, convert_to_numpy=True, show_progress_bar=False)
# Retrieve the k nearest neighbours
distance, index = self.index.search(np.array([embedding]), k=top_k)
distance, index = distance.flatten().tolist(), index.flatten().tolist()
index_url = [WitIndex.wit_dataset['desc2image_map'][i] for i in index]
image_info = [WitIndex.wit_dataset['image_info'][i] for i in index_url]
print(f"> URL: {image_info[0]}")
return distance, index, image_info