cagataydag's picture
Duplicate from OFA-Sys/OFA-Image_Caption
733aa30
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import gc
import os.path as osp
import warnings
from collections import deque, namedtuple
from typing import Any, Dict, Tuple
import numpy as np
import torch
from fairseq import tasks
from fairseq.data.dictionary import Dictionary
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models.fairseq_model import FairseqModel
from fairseq.utils import apply_to_sample
from omegaconf import open_dict, OmegaConf
from typing import List
from .decoder_config import FlashlightDecoderConfig
from .base_decoder import BaseDecoder
try:
from flashlight.lib.text.decoder import (
LM,
CriterionType,
DecodeResult,
KenLM,
LexiconDecoder,
LexiconDecoderOptions,
LexiconFreeDecoder,
LexiconFreeDecoderOptions,
LMState,
SmearingMode,
Trie,
)
from flashlight.lib.text.dictionary import create_word_dict, load_words
except ImportError:
warnings.warn(
"flashlight python bindings are required to use this functionality. "
"Please install from "
"https://github.com/facebookresearch/flashlight/tree/master/bindings/python"
)
LM = object
LMState = object
class KenLMDecoder(BaseDecoder):
def __init__(self, cfg: FlashlightDecoderConfig, tgt_dict: Dictionary) -> None:
super().__init__(tgt_dict)
self.nbest = cfg.nbest
self.unitlm = cfg.unitlm
if cfg.lexicon:
self.lexicon = load_words(cfg.lexicon)
self.word_dict = create_word_dict(self.lexicon)
self.unk_word = self.word_dict.get_index("<unk>")
self.lm = KenLM(cfg.lmpath, self.word_dict)
self.trie = Trie(self.vocab_size, self.silence)
start_state = self.lm.start(False)
for word, spellings in self.lexicon.items():
word_idx = self.word_dict.get_index(word)
_, score = self.lm.score(start_state, word_idx)
for spelling in spellings:
spelling_idxs = [tgt_dict.index(token) for token in spelling]
assert (
tgt_dict.unk() not in spelling_idxs
), f"{word} {spelling} {spelling_idxs}"
self.trie.insert(spelling_idxs, word_idx, score)
self.trie.smear(SmearingMode.MAX)
self.decoder_opts = LexiconDecoderOptions(
beam_size=cfg.beam,
beam_size_token=cfg.beamsizetoken or len(tgt_dict),
beam_threshold=cfg.beamthreshold,
lm_weight=cfg.lmweight,
word_score=cfg.wordscore,
unk_score=cfg.unkweight,
sil_score=cfg.silweight,
log_add=False,
criterion_type=CriterionType.CTC,
)
self.decoder = LexiconDecoder(
self.decoder_opts,
self.trie,
self.lm,
self.silence,
self.blank,
self.unk_word,
[],
self.unitlm,
)
else:
assert self.unitlm, "Lexicon-free decoding requires unit LM"
d = {w: [[w]] for w in tgt_dict.symbols}
self.word_dict = create_word_dict(d)
self.lm = KenLM(cfg.lmpath, self.word_dict)
self.decoder_opts = LexiconFreeDecoderOptions(
beam_size=cfg.beam,
beam_size_token=cfg.beamsizetoken or len(tgt_dict),
beam_threshold=cfg.beamthreshold,
lm_weight=cfg.lmweight,
sil_score=cfg.silweight,
log_add=False,
criterion_type=CriterionType.CTC,
)
self.decoder = LexiconFreeDecoder(
self.decoder_opts, self.lm, self.silence, self.blank, []
)
def get_timesteps(self, token_idxs: List[int]) -> List[int]:
"""Returns frame numbers corresponding to every non-blank token.
Parameters
----------
token_idxs : List[int]
IDs of decoded tokens.
Returns
-------
List[int]
Frame numbers corresponding to every non-blank token.
"""
timesteps = []
for i, token_idx in enumerate(token_idxs):
if token_idx == self.blank:
continue
if i == 0 or token_idx != token_idxs[i-1]:
timesteps.append(i)
return timesteps
def decode(
self,
emissions: torch.FloatTensor,
) -> List[List[Dict[str, torch.LongTensor]]]:
B, T, N = emissions.size()
hypos = []
for b in range(B):
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
results = self.decoder.decode(emissions_ptr, T, N)
nbest_results = results[: self.nbest]
hypos.append(
[
{
"tokens": self.get_tokens(result.tokens),
"score": result.score,
"timesteps": self.get_timesteps(result.tokens),
"words": [
self.word_dict.get_entry(x) for x in result.words if x >= 0
],
}
for result in nbest_results
]
)
return hypos
FairseqLMState = namedtuple(
"FairseqLMState",
[
"prefix",
"incremental_state",
"probs",
],
)
class FairseqLM(LM):
def __init__(self, dictionary: Dictionary, model: FairseqModel) -> None:
super().__init__()
self.dictionary = dictionary
self.model = model
self.unk = self.dictionary.unk()
self.save_incremental = False # this currently does not work properly
self.max_cache = 20_000
if torch.cuda.is_available():
model.cuda()
model.eval()
model.make_generation_fast_()
self.states = {}
self.stateq = deque()
def start(self, start_with_nothing: bool) -> LMState:
state = LMState()
prefix = torch.LongTensor([[self.dictionary.eos()]])
incremental_state = {} if self.save_incremental else None
with torch.no_grad():
res = self.model(prefix.cuda(), incremental_state=incremental_state)
probs = self.model.get_normalized_probs(res, log_probs=True, sample=None)
if incremental_state is not None:
incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state)
self.states[state] = FairseqLMState(
prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy()
)
self.stateq.append(state)
return state
def score(
self,
state: LMState,
token_index: int,
no_cache: bool = False,
) -> Tuple[LMState, int]:
"""
Evaluate language model based on the current lm state and new word
Parameters:
-----------
state: current lm state
token_index: index of the word
(can be lexicon index then you should store inside LM the
mapping between indices of lexicon and lm, or lm index of a word)
Returns:
--------
(LMState, float): pair of (new state, score for the current word)
"""
curr_state = self.states[state]
def trim_cache(targ_size: int) -> None:
while len(self.stateq) > targ_size:
rem_k = self.stateq.popleft()
rem_st = self.states[rem_k]
rem_st = FairseqLMState(rem_st.prefix, None, None)
self.states[rem_k] = rem_st
if curr_state.probs is None:
new_incremental_state = (
curr_state.incremental_state.copy()
if curr_state.incremental_state is not None
else None
)
with torch.no_grad():
if new_incremental_state is not None:
new_incremental_state = apply_to_sample(
lambda x: x.cuda(), new_incremental_state
)
elif self.save_incremental:
new_incremental_state = {}
res = self.model(
torch.from_numpy(curr_state.prefix).cuda(),
incremental_state=new_incremental_state,
)
probs = self.model.get_normalized_probs(
res, log_probs=True, sample=None
)
if new_incremental_state is not None:
new_incremental_state = apply_to_sample(
lambda x: x.cpu(), new_incremental_state
)
curr_state = FairseqLMState(
curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy()
)
if not no_cache:
self.states[state] = curr_state
self.stateq.append(state)
score = curr_state.probs[token_index].item()
trim_cache(self.max_cache)
outstate = state.child(token_index)
if outstate not in self.states and not no_cache:
prefix = np.concatenate(
[curr_state.prefix, torch.LongTensor([[token_index]])], -1
)
incr_state = curr_state.incremental_state
self.states[outstate] = FairseqLMState(prefix, incr_state, None)
if token_index == self.unk:
score = float("-inf")
return outstate, score
def finish(self, state: LMState) -> Tuple[LMState, int]:
"""
Evaluate eos for language model based on the current lm state
Returns:
--------
(LMState, float): pair of (new state, score for the current word)
"""
return self.score(state, self.dictionary.eos())
def empty_cache(self) -> None:
self.states = {}
self.stateq = deque()
gc.collect()
class FairseqLMDecoder(BaseDecoder):
def __init__(self, cfg: FlashlightDecoderConfig, tgt_dict: Dictionary) -> None:
super().__init__(tgt_dict)
self.nbest = cfg.nbest
self.unitlm = cfg.unitlm
self.lexicon = load_words(cfg.lexicon) if cfg.lexicon else None
self.idx_to_wrd = {}
checkpoint = torch.load(cfg.lmpath, map_location="cpu")
if "cfg" in checkpoint and checkpoint["cfg"] is not None:
lm_args = checkpoint["cfg"]
else:
lm_args = convert_namespace_to_omegaconf(checkpoint["args"])
if not OmegaConf.is_dict(lm_args):
lm_args = OmegaConf.create(lm_args)
with open_dict(lm_args.task):
lm_args.task.data = osp.dirname(cfg.lmpath)
task = tasks.setup_task(lm_args.task)
model = task.build_model(lm_args.model)
model.load_state_dict(checkpoint["model"], strict=False)
self.trie = Trie(self.vocab_size, self.silence)
self.word_dict = task.dictionary
self.unk_word = self.word_dict.unk()
self.lm = FairseqLM(self.word_dict, model)
if self.lexicon:
start_state = self.lm.start(False)
for i, (word, spellings) in enumerate(self.lexicon.items()):
if self.unitlm:
word_idx = i
self.idx_to_wrd[i] = word
score = 0
else:
word_idx = self.word_dict.index(word)
_, score = self.lm.score(start_state, word_idx, no_cache=True)
for spelling in spellings:
spelling_idxs = [tgt_dict.index(token) for token in spelling]
assert (
tgt_dict.unk() not in spelling_idxs
), f"{spelling} {spelling_idxs}"
self.trie.insert(spelling_idxs, word_idx, score)
self.trie.smear(SmearingMode.MAX)
self.decoder_opts = LexiconDecoderOptions(
beam_size=cfg.beam,
beam_size_token=cfg.beamsizetoken or len(tgt_dict),
beam_threshold=cfg.beamthreshold,
lm_weight=cfg.lmweight,
word_score=cfg.wordscore,
unk_score=cfg.unkweight,
sil_score=cfg.silweight,
log_add=False,
criterion_type=CriterionType.CTC,
)
self.decoder = LexiconDecoder(
self.decoder_opts,
self.trie,
self.lm,
self.silence,
self.blank,
self.unk_word,
[],
self.unitlm,
)
else:
assert self.unitlm, "Lexicon-free decoding requires unit LM"
d = {w: [[w]] for w in tgt_dict.symbols}
self.word_dict = create_word_dict(d)
self.lm = KenLM(cfg.lmpath, self.word_dict)
self.decoder_opts = LexiconFreeDecoderOptions(
beam_size=cfg.beam,
beam_size_token=cfg.beamsizetoken or len(tgt_dict),
beam_threshold=cfg.beamthreshold,
lm_weight=cfg.lmweight,
sil_score=cfg.silweight,
log_add=False,
criterion_type=CriterionType.CTC,
)
self.decoder = LexiconFreeDecoder(
self.decoder_opts, self.lm, self.silence, self.blank, []
)
def decode(
self,
emissions: torch.FloatTensor,
) -> List[List[Dict[str, torch.LongTensor]]]:
B, T, N = emissions.size()
hypos = []
def make_hypo(result: DecodeResult) -> Dict[str, Any]:
hypo = {
"tokens": self.get_tokens(result.tokens),
"score": result.score,
}
if self.lexicon:
hypo["words"] = [
self.idx_to_wrd[x] if self.unitlm else self.word_dict[x]
for x in result.words
if x >= 0
]
return hypo
for b in range(B):
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
results = self.decoder.decode(emissions_ptr, T, N)
nbest_results = results[: self.nbest]
hypos.append([make_hypo(result) for result in nbest_results])
self.lm.empty_cache()
return hypos