Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import json | |
| from model_handler import ModelHandler | |
| from config import LING_FLASH_2_0 | |
| def _format_outline_for_prompt(df: pd.DataFrame) -> str: | |
| """Formats the outline DataFrame into a simple numbered list for the prompt.""" | |
| if df is None or df.empty: | |
| return "无任务。" | |
| tasks = [f"{i+1}. {row['Task']}" for i, row in df.iterrows()] | |
| return "\n".join(tasks) | |
| def update_outline_status_agent(short_outline_df: pd.DataFrame, editor_content: str): | |
| """ | |
| Agent to analyze text and update the outline's completion status using a real LLM. | |
| """ | |
| if editor_content is None or len(editor_content.strip()) < 20: | |
| return short_outline_df # Return original df | |
| try: | |
| # 1. Prepare Prompts | |
| system_prompt = ( | |
| "你是一个任务分析机器人。请仔细阅读用户提供的'已完成大纲'和'当前文本',判断大纲中的每项任务是否已经在文本中被完成。\n" | |
| "你的回答必须是一个遵循以下规则的 JSON 对象:\n" | |
| "1. JSON 的 key 是大纲中的任务原文。\n" | |
| "2. JSON 的 value 是一个布尔值 (`true` 或 `false`),`true` 代表任务已完成,`false` 代表未完成。\n" | |
| "3. 不要返回除了这个 JSON 对象之外的任何其他文本、解释或代码块标记。" | |
| ) | |
| outline_str = _format_outline_for_prompt(short_outline_df) | |
| user_prompt = ( | |
| f"### 已有大纲\n{outline_str}\n\n" | |
| f"### 当前文本\n{editor_content[-4000:]}\n\n" | |
| "### 指令\n请根据上述'当前文本',分析'已有大纲'中的任务完成情况,并返回 JSON 对象。" | |
| ) | |
| # 2. Call LLM | |
| model_handler = ModelHandler() | |
| response_generator = model_handler.generate_code( | |
| system_prompt=system_prompt, | |
| user_prompt=user_prompt, | |
| model_choice=LING_FLASH_2_0 | |
| ) | |
| full_response = "".join(chunk for chunk in response_generator) | |
| # 3. Parse JSON and Update DataFrame | |
| print("【收到的完整上下文】") | |
| print("full_response:", repr(full_response)) | |
| # Clean up potential markdown code block | |
| if full_response.strip().startswith("```json"): | |
| full_response = full_response.strip()[7:-3].strip() | |
| completion_status = json.loads(full_response) | |
| # Create a copy to avoid modifying the original df in place | |
| updated_df = short_outline_df.copy() | |
| for i, row in updated_df.iterrows(): | |
| task_text = row['Task'] | |
| if task_text in completion_status: | |
| updated_df.at[i, 'Done'] = bool(completion_status[task_text]) | |
| print("【收到的完整上下文】") | |
| print("updated_df:\n", updated_df.to_string()) | |
| return updated_df | |
| except json.JSONDecodeError: | |
| print(f"[Agent] Error: Failed to decode JSON from LLM response: {full_response}") | |
| # On JSON error, we don't want to change anything. | |
| return short_outline_df | |
| except Exception as e: | |
| print(f"[Agent] Error updating outline status: {e}") | |
| # On other errors, also return the original dataframe. | |
| return short_outline_df | |