Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import dataclasses | |
import json | |
import os | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import spaces | |
from uso.flux.pipeline import USOPipeline | |
from transformers import SiglipVisionModel, SiglipImageProcessor | |
with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file: | |
text_content = svg_file.read() | |
with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file: | |
logo_content = svg_file.read() | |
title = f""" | |
<div style="display: flex; align-items: center; justify-content: center;"> | |
<span style="transform: scale(0.7);margin-right: -5px;">{text_content}</span> | |
<span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">by UXO Team</span> | |
<span style="margin-left: 0px; transform: scale(0.85); display: inline-block;">{logo_content}</span> | |
</div> | |
""".strip() | |
badges_text = r""" | |
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;"> | |
<a href="https://github.com/bytedance/USO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a> | |
<a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-yellow"></a> | |
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-USO-b31b1b.svg"></a> | |
<a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a> | |
</div> | |
""".strip() | |
tips = """ | |
**What is USO?** 🎨 | |
USO is a unified style-subject optimized customization model and the latest addition to the UXO family (<a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>). | |
It can freely combine any subjects with any styles in any scenarios. | |
**How to use?** 💡 | |
We provide step-by-step instructions in our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. | |
Additionally, try the examples provided below the demo to quickly get familiar with USO and spark your creativity! | |
<details> | |
<summary style="cursor: pointer; color: #d34c0e; font-weight: 500;">The model is trained on 1024x1024 resolution and supports 3 types of usage. 📌 Tips:</summary> | |
* **Only content img**: support following types: | |
* Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**) | |
* Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*. | |
* Style edit (layout-shift): *Ghibli style, the man on the beach.*. | |
* **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta). | |
* **Content img + style img**: Place the content into the desired style. | |
* Layout-preserved: set prompt to **empty**. | |
* Layout-shift: using natural prompt.</details>""" | |
star = r""" | |
If USO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. Thanks a lot!""" | |
def get_examples(examples_dir: str = "assets/examples") -> list: | |
examples = Path(examples_dir) | |
ans = [] | |
for example in examples.iterdir(): | |
if not example.is_dir() or len(os.listdir(example)) == 0: | |
continue | |
with open(example / "config.json") as f: | |
example_dict = json.load(f) | |
example_list = [] | |
# example_list.append(example_dict["usage"]) # case for | |
example_list.append(example_dict["prompt"]) # prompt | |
for key in ["image_ref1", "image_ref2", "image_ref3"]: | |
if key in example_dict: | |
example_list.append(str(example / example_dict[key])) | |
else: | |
example_list.append(None) | |
example_list.append(example_dict["seed"]) | |
ans.append(example_list) | |
return ans | |
def create_demo( | |
model_type: str, | |
device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
offload: bool = False, | |
): | |
pipeline = USOPipeline( | |
model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True | |
) | |
print("USOPipeline loaded successfully") | |
siglip_processor = SiglipImageProcessor.from_pretrained( | |
"google/siglip-so400m-patch14-384" | |
) | |
siglip_model = SiglipVisionModel.from_pretrained( | |
"google/siglip-so400m-patch14-384" | |
) | |
siglip_model.eval() | |
siglip_model.to(device) | |
pipeline.model.vision_encoder = siglip_model | |
pipeline.model.vision_encoder_processor = siglip_processor | |
print("SigLIP model loaded successfully") | |
pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate) | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(badges_text) | |
gr.Markdown(tips) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="A beautiful woman.") | |
with gr.Row(): | |
image_prompt1 = gr.Image( | |
label="Content Reference Img", visible=True, interactive=True, type="pil" | |
) | |
image_prompt2 = gr.Image( | |
label="Style Reference Img", visible=True, interactive=True, type="pil" | |
) | |
image_prompt3 = gr.Image( | |
label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil" | |
) | |
with gr.Row(): | |
with gr.Row(): | |
width = gr.Slider( | |
512, 1536, 1024, step=16, label="Generation Width" | |
) | |
height = gr.Slider( | |
512, 1536, 1024, step=16, label="Generation Height" | |
) | |
with gr.Row(): | |
with gr.Row(): | |
keep_size = gr.Checkbox( | |
label="Keep input size", | |
value=False, | |
interactive=True | |
) | |
with gr.Column(): | |
gr.Markdown("Set it to True if you only need style editing or want to keep the layout.") | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Row(): | |
num_steps = gr.Slider( | |
1, 50, 25, step=1, label="Number of steps" | |
) | |
guidance = gr.Slider( | |
1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True | |
) | |
content_long_size = gr.Slider( | |
0, 1024, 512, step=16, label="Content reference size" | |
) | |
seed = gr.Number(-1, label="Seed (-1 for random)") | |
generate_btn = gr.Button("Generate") | |
gr.Markdown(star) | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
download_btn = gr.File( | |
label="Download full-resolution", type="filepath", interactive=False | |
) | |
inputs = [ | |
prompt, | |
image_prompt1, | |
image_prompt2, | |
image_prompt3, | |
seed, | |
width, | |
height, | |
guidance, | |
num_steps, | |
keep_size, | |
content_long_size, | |
] | |
generate_btn.click( | |
fn=pipeline.gradio_generate, | |
inputs=inputs, | |
outputs=[output_image, download_btn], | |
) | |
example_text = gr.Text("", visible=False, label="Case For:") | |
examples = get_examples("./assets/gradio_examples") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
prompt, | |
image_prompt1, | |
image_prompt2, | |
image_prompt3, | |
seed, | |
], | |
# cache_examples='lazy', | |
outputs=[output_image, download_btn], | |
fn=pipeline.gradio_generate, | |
label='row 1-4: identity/subject-driven; row 5-7: style-subject-driven; row 8-9: style-driven; row 10-12: multi-style-driven task; row 13: txt2img', | |
examples_per_page=15 | |
) | |
return demo | |
if __name__ == "__main__": | |
from typing import Literal | |
from transformers import HfArgumentParser | |
class AppArgs: | |
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev" | |
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu" | |
offload: bool = dataclasses.field( | |
default=False, | |
metadata={ | |
"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used." | |
}, | |
) | |
port: int = 7860 | |
parser = HfArgumentParser([AppArgs]) | |
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs] | |
args = args_tuple[0] | |
demo = create_demo(args.name, args.device, args.offload) | |
demo.launch(server_port=args.port, ssr_mode=False) | |