Spaces:
Sleeping
Sleeping
from torch.utils.data import Dataset | |
import os | |
import json | |
import numpy as np | |
import torch | |
import imageio | |
import math | |
import cv2 | |
from torchvision import transforms | |
def cartesian_to_spherical(xyz): | |
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) | |
xy = xyz[:,0]**2 + xyz[:,1]**2 | |
z = np.sqrt(xy + xyz[:,2]**2) | |
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down | |
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up | |
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) | |
return np.array([theta, azimuth, z]) | |
def get_T(T_target, T_cond): | |
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) | |
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) | |
d_theta = theta_target - theta_cond | |
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
d_z = z_target - z_cond | |
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) | |
return d_T | |
def get_spherical(T_target, T_cond): | |
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :]) | |
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :]) | |
d_theta = theta_target - theta_cond | |
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
d_z = z_target - z_cond | |
d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()]) | |
return d_T | |
class RTMV(Dataset): | |
def __init__(self, root_dir='datasets/RTMV/google_scanned',\ | |
first_K=64, resolution=256, load_target=False): | |
self.root_dir = root_dir | |
self.scene_list = sorted(next(os.walk(root_dir))[1]) | |
self.resolution = resolution | |
self.first_K = first_K | |
self.load_target = load_target | |
def __len__(self): | |
return len(self.scene_list) | |
def __getitem__(self, idx): | |
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) | |
with open(os.path.join(scene_dir, 'transforms.json'), "r") as f: | |
meta = json.load(f) | |
imgs = [] | |
poses = [] | |
for i_img in range(self.first_K): | |
meta_img = meta['frames'][i_img] | |
if i_img == 0 or self.load_target: | |
img_path = os.path.join(scene_dir, meta_img['file_path']) | |
img = imageio.imread(img_path) | |
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) | |
imgs.append(img) | |
c2w = meta_img['transform_matrix'] | |
poses.append(c2w) | |
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs | |
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) | |
imgs = imgs * 2 - 1. # convert to stable diffusion range | |
poses = torch.tensor(np.array(poses).astype(np.float32)) | |
return imgs, poses | |
def blend_rgba(self, img): | |
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB | |
return img | |
class GSO(Dataset): | |
def __init__(self, root_dir='datasets/GoogleScannedObjects',\ | |
split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'): | |
self.root_dir = root_dir | |
with open(os.path.join(root_dir, '%s.json' % split), "r") as f: | |
self.scene_list = json.load(f) | |
self.resolution = resolution | |
self.first_K = first_K | |
self.load_target = load_target | |
self.name = name | |
def __len__(self): | |
return len(self.scene_list) | |
def __getitem__(self, idx): | |
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) | |
with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f: | |
meta = json.load(f) | |
imgs = [] | |
poses = [] | |
for i_img in range(self.first_K): | |
meta_img = meta['frames'][i_img] | |
if i_img == 0 or self.load_target: | |
img_path = os.path.join(scene_dir, meta_img['file_path']) | |
img = imageio.imread(img_path) | |
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) | |
imgs.append(img) | |
c2w = meta_img['transform_matrix'] | |
poses.append(c2w) | |
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs | |
mask = imgs[:, :, :, -1] | |
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) | |
imgs = imgs * 2 - 1. # convert to stable diffusion range | |
poses = torch.tensor(np.array(poses).astype(np.float32)) | |
return imgs, poses | |
def blend_rgba(self, img): | |
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB | |
return img | |
class WILD(Dataset): | |
def __init__(self, root_dir='data/nerf_wild',\ | |
first_K=33, resolution=256, load_target=False): | |
self.root_dir = root_dir | |
self.scene_list = sorted(next(os.walk(root_dir))[1]) | |
self.resolution = resolution | |
self.first_K = first_K | |
self.load_target = load_target | |
def __len__(self): | |
return len(self.scene_list) | |
def __getitem__(self, idx): | |
scene_dir = os.path.join(self.root_dir, self.scene_list[idx]) | |
with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f: | |
meta = json.load(f) | |
imgs = [] | |
poses = [] | |
for i_img in range(self.first_K): | |
meta_img = meta['frames'][i_img] | |
if i_img == 0 or self.load_target: | |
img_path = os.path.join(scene_dir, meta_img['file_path']) | |
img = imageio.imread(img_path + '.png') | |
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR) | |
imgs.append(img) | |
c2w = meta_img['transform_matrix'] | |
poses.append(c2w) | |
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs | |
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2) | |
imgs = imgs * 2 - 1. # convert to stable diffusion range | |
poses = torch.tensor(np.array(poses).astype(np.float32)) | |
return imgs, poses | |
def blend_rgba(self, img): | |
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB | |
return img |