Spaces:
Sleeping
Sleeping
import numpy as np | |
import random | |
import string | |
from torch.utils.data import Dataset, Subset | |
class DummyData(Dataset): | |
def __init__(self, length, size): | |
self.length = length | |
self.size = size | |
def __len__(self): | |
return self.length | |
def __getitem__(self, i): | |
x = np.random.randn(*self.size) | |
letters = string.ascii_lowercase | |
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10)) | |
return {"jpg": x, "txt": y} | |
class DummyDataWithEmbeddings(Dataset): | |
def __init__(self, length, size, emb_size): | |
self.length = length | |
self.size = size | |
self.emb_size = emb_size | |
def __len__(self): | |
return self.length | |
def __getitem__(self, i): | |
x = np.random.randn(*self.size) | |
y = np.random.randn(*self.emb_size).astype(np.float32) | |
return {"jpg": x, "txt": y} | |