bvk1ng's picture
Changed range of n_samples from 0-100000 to 0-20000
077f898
raw
history blame
1.67 kB
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph
import gradio as gr
np.random.seed(42)
def agglomorative_cluster(n_samples: int, n_neighbours: int, n_clusters: int, linkage: str, connectivity: bool) -> "plt.Figure":
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)
X = np.concatenate((x, y))
X += 0.7 * np.random.randn(2, n_samples)
X = X.T
knn_graph = kneighbors_graph(X, n_neighbors=n_neighbours, include_self=False)
connectivity = knn_graph if not connectivity else None
fig, ax = plt.subplots(1, 1, figsize=(24, 15))
model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=int(n_clusters))
model.fit(X)
ax.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.nipy_spectral)
ax.axis("equal")
ax.axis("off")
return fig
demo = gr.Interface(
fn = agglomorative_cluster,
inputs = [gr.Slider(0, 20_000, label="n_samples", info="the number of samples in the data.", step=1),
gr.Slider(0, 30, label="n_neighbours", info="the number of neighbours in the data", step=1),
gr.Dropdown([3, 30], label="n_clusters", info="the number of clusters in the data"),
gr.Dropdown(['average', 'complete', 'ward', 'single'], label="linkage", info="the different types of aggolomorative clustering techniques"),
gr.Checkbox(True, label="connectivity", info="whether to impose a connectivity into the graph")],
outputs = [gr.Plot(label="Plot")]
)
demo.launch()