Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from diffusers import StableDiffusionImg2ImgPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline): | |
| debug_save = False | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: Union[ | |
| torch.Tensor, | |
| PIL.Image.Image, | |
| np.ndarray, | |
| List[torch.Tensor], | |
| List[PIL.Image.Image], | |
| List[np.ndarray], | |
| ] = None, | |
| strength: float = 0.8, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| mask: Union[ | |
| torch.Tensor, | |
| PIL.Image.Image, | |
| np.ndarray, | |
| List[torch.Tensor], | |
| List[PIL.Image.Image], | |
| List[np.ndarray], | |
| ] = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image` or tensor representing an image batch to be used as the starting point. Can also accept image | |
| latents as `image`, but if passing latents directly it is not encoded again. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*): | |
| A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| # code adapted from parent class StableDiffusionImg2ImgPipeline | |
| # 0. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) | |
| # 1. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 2. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| image = self.image_processor.preprocess(image) | |
| # 4. set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # 5. Prepare latent variables | |
| # it is sampled from the latent distribution of the VAE | |
| latents = self.prepare_latents( | |
| image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
| ) | |
| # mean of the latent distribution | |
| init_latents = [ | |
| self.vae.encode(image.to(device=device, dtype=prompt_embeds.dtype)[i : i + 1]).latent_dist.mean | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| # 6. create latent mask | |
| latent_mask = self._make_latent_mask(latents, mask) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if latent_mask is not None: | |
| latents = torch.lerp(init_latents * self.vae.config.scaling_factor, latents, latent_mask) | |
| noise_pred = torch.lerp(torch.zeros_like(noise_pred), noise_pred, latent_mask) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| scaled = latents / self.vae.config.scaling_factor | |
| if latent_mask is not None: | |
| # scaled = latents / self.vae.config.scaling_factor * latent_mask + init_latents * (1 - latent_mask) | |
| scaled = torch.lerp(init_latents, scaled, latent_mask) | |
| image = self.vae.decode(scaled, return_dict=False)[0] | |
| if self.debug_save: | |
| image_gen = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image_gen = self.image_processor.postprocess(image_gen, output_type=output_type, do_denormalize=[True]) | |
| image_gen[0].save("from_latent.png") | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def _make_latent_mask(self, latents, mask): | |
| if mask is not None: | |
| latent_mask = [] | |
| if not isinstance(mask, list): | |
| tmp_mask = [mask] | |
| else: | |
| tmp_mask = mask | |
| _, l_channels, l_height, l_width = latents.shape | |
| for m in tmp_mask: | |
| if not isinstance(m, PIL.Image.Image): | |
| if len(m.shape) == 2: | |
| m = m[..., np.newaxis] | |
| if m.max() > 1: | |
| m = m / 255.0 | |
| m = self.image_processor.numpy_to_pil(m)[0] | |
| if m.mode != "L": | |
| m = m.convert("L") | |
| resized = self.image_processor.resize(m, l_height, l_width) | |
| if self.debug_save: | |
| resized.save("latent_mask.png") | |
| latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0)) | |
| latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents) | |
| latent_mask = latent_mask / latent_mask.max() | |
| return latent_mask | |