Spaces:
Sleeping
Sleeping
Nathan Butters
commited on
Commit
·
9d6f821
1
Parent(s):
3318d47
reverting
Browse files- .ipynb_checkpoints/app-checkpoint.py +10 -9
- app.py +10 -9
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -3,6 +3,14 @@ import pandas as pd, spacy, nltk, numpy as np, re, os
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
#Import the libraries to support the model and predictions.
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
8 |
import lime
|
@@ -27,17 +35,10 @@ def set_up_explainer():
|
|
27 |
|
28 |
@st.experimental_singleton
|
29 |
def prepare_model():
|
30 |
-
#Attempting to fix the issue with spacy model in a more intuitive way.
|
31 |
-
try:
|
32 |
-
nlp = spacy.load("en_core_web_lg")
|
33 |
-
except:
|
34 |
-
script = "python -m spacy download en_core_web_lg"
|
35 |
-
os.system("bash -c '%s'" % script)
|
36 |
-
nlp = spacy.load("en_core_web_lg")
|
37 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
38 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
40 |
-
return tokenizer, model, pipe
|
41 |
|
42 |
@st.experimental_singleton
|
43 |
def prepare_lists():
|
@@ -85,7 +86,7 @@ st.subheader(f'Current Layout: {layout}')
|
|
85 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
86 |
|
87 |
#Prepare the model, data, and Lime. Set starting variables.
|
88 |
-
tokenizer, model, pipe
|
89 |
countries, professions, word_lists = prepare_lists()
|
90 |
explainer = set_up_explainer()
|
91 |
text2 = ""
|
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
6 |
+
#Attempting to fix the issue with spacy model in a more intuitive way.
|
7 |
+
try:
|
8 |
+
nlp = spacy.load("en_core_web_lg")
|
9 |
+
except:
|
10 |
+
script = "python -m spacy download en_core_web_lg"
|
11 |
+
os.system("bash -c '%s'" % script)
|
12 |
+
nlp = spacy.load("en_core_web_lg")
|
13 |
+
|
14 |
#Import the libraries to support the model and predictions.
|
15 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
16 |
import lime
|
|
|
35 |
|
36 |
@st.experimental_singleton
|
37 |
def prepare_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
40 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
41 |
+
return tokenizer, model, pipe
|
42 |
|
43 |
@st.experimental_singleton
|
44 |
def prepare_lists():
|
|
|
86 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
87 |
|
88 |
#Prepare the model, data, and Lime. Set starting variables.
|
89 |
+
tokenizer, model, pipe = prepare_model()
|
90 |
countries, professions, word_lists = prepare_lists()
|
91 |
explainer = set_up_explainer()
|
92 |
text2 = ""
|
app.py
CHANGED
@@ -3,6 +3,14 @@ import pandas as pd, spacy, nltk, numpy as np, re, os
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
#Import the libraries to support the model and predictions.
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
8 |
import lime
|
@@ -27,17 +35,10 @@ def set_up_explainer():
|
|
27 |
|
28 |
@st.experimental_singleton
|
29 |
def prepare_model():
|
30 |
-
#Attempting to fix the issue with spacy model in a more intuitive way.
|
31 |
-
try:
|
32 |
-
nlp = spacy.load("en_core_web_lg")
|
33 |
-
except:
|
34 |
-
script = "python -m spacy download en_core_web_lg"
|
35 |
-
os.system("bash -c '%s'" % script)
|
36 |
-
nlp = spacy.load("en_core_web_lg")
|
37 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
38 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
40 |
-
return tokenizer, model, pipe
|
41 |
|
42 |
@st.experimental_singleton
|
43 |
def prepare_lists():
|
@@ -85,7 +86,7 @@ st.subheader(f'Current Layout: {layout}')
|
|
85 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
86 |
|
87 |
#Prepare the model, data, and Lime. Set starting variables.
|
88 |
-
tokenizer, model, pipe
|
89 |
countries, professions, word_lists = prepare_lists()
|
90 |
explainer = set_up_explainer()
|
91 |
text2 = ""
|
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
6 |
+
#Attempting to fix the issue with spacy model in a more intuitive way.
|
7 |
+
try:
|
8 |
+
nlp = spacy.load("en_core_web_lg")
|
9 |
+
except:
|
10 |
+
script = "python -m spacy download en_core_web_lg"
|
11 |
+
os.system("bash -c '%s'" % script)
|
12 |
+
nlp = spacy.load("en_core_web_lg")
|
13 |
+
|
14 |
#Import the libraries to support the model and predictions.
|
15 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
16 |
import lime
|
|
|
35 |
|
36 |
@st.experimental_singleton
|
37 |
def prepare_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
40 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
41 |
+
return tokenizer, model, pipe
|
42 |
|
43 |
@st.experimental_singleton
|
44 |
def prepare_lists():
|
|
|
86 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
87 |
|
88 |
#Prepare the model, data, and Lime. Set starting variables.
|
89 |
+
tokenizer, model, pipe = prepare_model()
|
90 |
countries, professions, word_lists = prepare_lists()
|
91 |
explainer = set_up_explainer()
|
92 |
text2 = ""
|