Spaces:
Sleeping
Sleeping
Nathan Butters
commited on
Commit
·
87d9953
1
Parent(s):
af2e26f
optimize computation
Browse files- .ipynb_checkpoints/app-checkpoint.py +11 -6
- app.py +9 -11
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
-
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
4 |
-
!python -m spacy download en_core_web_lg
|
5 |
-
nlp = spacy.load("en_core_web_lg")
|
6 |
from nltk.corpus import wordnet
|
7 |
|
8 |
#Import the libraries to support the model and predictions.
|
@@ -29,10 +27,17 @@ def set_up_explainer():
|
|
29 |
|
30 |
@st.experimental_singleton
|
31 |
def prepare_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
33 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
34 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
35 |
-
return tokenizer, model, pipe
|
36 |
|
37 |
@st.experimental_singleton
|
38 |
def prepare_lists():
|
@@ -80,7 +85,7 @@ st.subheader(f'Current Layout: {layout}')
|
|
80 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
81 |
|
82 |
#Prepare the model, data, and Lime. Set starting variables.
|
83 |
-
tokenizer, model, pipe = prepare_model()
|
84 |
countries, professions, word_lists = prepare_lists()
|
85 |
explainer = set_up_explainer()
|
86 |
text2 = ""
|
@@ -347,4 +352,4 @@ if layout == 'VizNLC':
|
|
347 |
size=alt.Size('seed:O'),
|
348 |
tooltip=('Categories','text','pred')
|
349 |
).mark_circle(opacity=.5).properties(width=450, height=450).add_selection(single_nearest)
|
350 |
-
st.altair_chart(full)
|
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
+
import pandas as pd, spacy, nltk, numpy as np, re, os
|
3 |
from spacy.matcher import Matcher
|
|
|
|
|
4 |
from nltk.corpus import wordnet
|
5 |
|
6 |
#Import the libraries to support the model and predictions.
|
|
|
27 |
|
28 |
@st.experimental_singleton
|
29 |
def prepare_model():
|
30 |
+
#Attempting to fix the issue with spacy model in a more intuitive way.
|
31 |
+
try:
|
32 |
+
nlp = spacy.load("en_core_web_lg")
|
33 |
+
except:
|
34 |
+
script = "python -m spacy download en_core_web_lg"
|
35 |
+
os.system("bash -c '%s'" % script)
|
36 |
+
nlp = spacy.load("en_core_web_lg")
|
37 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
38 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
40 |
+
return tokenizer, model, pipe, nlp
|
41 |
|
42 |
@st.experimental_singleton
|
43 |
def prepare_lists():
|
|
|
85 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
86 |
|
87 |
#Prepare the model, data, and Lime. Set starting variables.
|
88 |
+
tokenizer, model, pipe, nlp = prepare_model()
|
89 |
countries, professions, word_lists = prepare_lists()
|
90 |
explainer = set_up_explainer()
|
91 |
text2 = ""
|
|
|
352 |
size=alt.Size('seed:O'),
|
353 |
tooltip=('Categories','text','pred')
|
354 |
).mark_circle(opacity=.5).properties(width=450, height=450).add_selection(single_nearest)
|
355 |
+
st.altair_chart(full)
|
app.py
CHANGED
@@ -3,15 +3,6 @@ import pandas as pd, spacy, nltk, numpy as np, re, os
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
6 |
-
#Attempting to fix the issue with spacy model in a more intuitive way.
|
7 |
-
try:
|
8 |
-
nlp = spacy.load("en_core_web_lg")
|
9 |
-
except:
|
10 |
-
script = "python -m spacy download en_core_web_lg"
|
11 |
-
os.system("bash -c '%s'" % script)
|
12 |
-
|
13 |
-
nlp = spacy.load("en_core_web_lg")
|
14 |
-
|
15 |
#Import the libraries to support the model and predictions.
|
16 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
17 |
import lime
|
@@ -36,10 +27,17 @@ def set_up_explainer():
|
|
36 |
|
37 |
@st.experimental_singleton
|
38 |
def prepare_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
40 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
41 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
42 |
-
return tokenizer, model, pipe
|
43 |
|
44 |
@st.experimental_singleton
|
45 |
def prepare_lists():
|
@@ -87,7 +85,7 @@ st.subheader(f'Current Layout: {layout}')
|
|
87 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
88 |
|
89 |
#Prepare the model, data, and Lime. Set starting variables.
|
90 |
-
tokenizer, model, pipe = prepare_model()
|
91 |
countries, professions, word_lists = prepare_lists()
|
92 |
explainer = set_up_explainer()
|
93 |
text2 = ""
|
|
|
3 |
from spacy.matcher import Matcher
|
4 |
from nltk.corpus import wordnet
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
#Import the libraries to support the model and predictions.
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
8 |
import lime
|
|
|
27 |
|
28 |
@st.experimental_singleton
|
29 |
def prepare_model():
|
30 |
+
#Attempting to fix the issue with spacy model in a more intuitive way.
|
31 |
+
try:
|
32 |
+
nlp = spacy.load("en_core_web_lg")
|
33 |
+
except:
|
34 |
+
script = "python -m spacy download en_core_web_lg"
|
35 |
+
os.system("bash -c '%s'" % script)
|
36 |
+
nlp = spacy.load("en_core_web_lg")
|
37 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
38 |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
39 |
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
|
40 |
+
return tokenizer, model, pipe, nlp
|
41 |
|
42 |
@st.experimental_singleton
|
43 |
def prepare_lists():
|
|
|
85 |
text = st.text_input('Provide a sentence you want to evaluate.', placeholder = "I like you. I love you.", key="input")
|
86 |
|
87 |
#Prepare the model, data, and Lime. Set starting variables.
|
88 |
+
tokenizer, model, pipe, nlp = prepare_model()
|
89 |
countries, professions, word_lists = prepare_lists()
|
90 |
explainer = set_up_explainer()
|
91 |
text2 = ""
|