Spaces:
Sleeping
Sleeping
Nathan Butters
commited on
Commit
•
05cd84e
1
Parent(s):
401217e
update app.py
Browse files- .DS_Store +0 -0
- .ipynb_checkpoints/app-checkpoint.py +1 -0
- Assets/.DS_Store +0 -0
- Assets/.ipynb_checkpoints/countries-checkpoint.csv +195 -0
- Assets/Countries/.ipynb_checkpoints/Country-Data-Origin-checkpoint.md +4 -0
- Assets/Countries/.ipynb_checkpoints/clean-countries-checkpoint.ipynb +2273 -0
- Assets/Countries/.ipynb_checkpoints/combined-countries-checkpoint.csv +167 -0
- Assets/Countries/.ipynb_checkpoints/countries-checkpoint.csv +195 -0
- Assets/Countries/Country-Data-Origin.md +4 -0
- Assets/Countries/DataPanelWHR2021C2.xls +0 -0
- Assets/Countries/clean-countries.ipynb +2273 -0
- Assets/Countries/combined-countries.csv +198 -0
- Assets/Countries/countries.csv +195 -0
- Assets/Professions/.ipynb_checkpoints/Standard_Occupational_Classifications_Orgin-checkpoint.md +9 -0
- Assets/Professions/.ipynb_checkpoints/clean-SOC-2018-checkpoint.ipynb +558 -0
- Assets/Professions/.ipynb_checkpoints/soc-professions-2018-checkpoint.csv +0 -0
- Assets/Professions/.ipynb_checkpoints/soc_2018_direct_match_title_file-checkpoint.csv +0 -0
- Assets/Professions/Standard_Occupational_Classifications_Orgin.md +9 -0
- Assets/Professions/clean-SOC-2018.ipynb +558 -0
- Assets/Professions/soc-professions-2018.csv +0 -0
- Assets/Professions/soc_2018_direct_match_title_file.csv +0 -0
- Assets/Professions/soc_2018_direct_match_title_file.xlsx +0 -0
- Assets/Professions/soc_structure_2018.xlsx +0 -0
- app.py +1 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
|
|
4 |
nlp = spacy.load("en_core_web_lg")
|
5 |
from nltk.corpus import wordnet
|
6 |
|
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
4 |
+
!python -m spacy download en_core_web_lg
|
5 |
nlp = spacy.load("en_core_web_lg")
|
6 |
from nltk.corpus import wordnet
|
7 |
|
Assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Assets/.ipynb_checkpoints/countries-checkpoint.csv
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Country,Continent
|
2 |
+
Algeria,Africa
|
3 |
+
Angola,Africa
|
4 |
+
Benin,Africa
|
5 |
+
Botswana,Africa
|
6 |
+
Burkina,Africa
|
7 |
+
Burundi,Africa
|
8 |
+
Cameroon,Africa
|
9 |
+
Cape Verde,Africa
|
10 |
+
Central African Republic,Africa
|
11 |
+
Chad,Africa
|
12 |
+
Comoros,Africa
|
13 |
+
Congo,Africa
|
14 |
+
"Congo, Democratic Republic of",Africa
|
15 |
+
Djibouti,Africa
|
16 |
+
Egypt,Africa
|
17 |
+
Equatorial Guinea,Africa
|
18 |
+
Eritrea,Africa
|
19 |
+
Ethiopia,Africa
|
20 |
+
Gabon,Africa
|
21 |
+
Gambia,Africa
|
22 |
+
Ghana,Africa
|
23 |
+
Guinea,Africa
|
24 |
+
Guinea-Bissau,Africa
|
25 |
+
Ivory Coast,Africa
|
26 |
+
Kenya,Africa
|
27 |
+
Lesotho,Africa
|
28 |
+
Liberia,Africa
|
29 |
+
Libya,Africa
|
30 |
+
Madagascar,Africa
|
31 |
+
Malawi,Africa
|
32 |
+
Mali,Africa
|
33 |
+
Mauritania,Africa
|
34 |
+
Mauritius,Africa
|
35 |
+
Morocco,Africa
|
36 |
+
Mozambique,Africa
|
37 |
+
Namibia,Africa
|
38 |
+
Niger,Africa
|
39 |
+
Nigeria,Africa
|
40 |
+
Rwanda,Africa
|
41 |
+
Sao Tome and Principe,Africa
|
42 |
+
Senegal,Africa
|
43 |
+
Seychelles,Africa
|
44 |
+
Sierra Leone,Africa
|
45 |
+
Somalia,Africa
|
46 |
+
South Africa,Africa
|
47 |
+
South Sudan,Africa
|
48 |
+
Sudan,Africa
|
49 |
+
Swaziland,Africa
|
50 |
+
Tanzania,Africa
|
51 |
+
Togo,Africa
|
52 |
+
Tunisia,Africa
|
53 |
+
Uganda,Africa
|
54 |
+
Zambia,Africa
|
55 |
+
Zimbabwe,Africa
|
56 |
+
Afghanistan,Asia
|
57 |
+
Bahrain,Asia
|
58 |
+
Bangladesh,Asia
|
59 |
+
Bhutan,Asia
|
60 |
+
Brunei,Asia
|
61 |
+
Burma (Myanmar),Asia
|
62 |
+
Cambodia,Asia
|
63 |
+
China,Asia
|
64 |
+
East Timor,Asia
|
65 |
+
India,Asia
|
66 |
+
Indonesia,Asia
|
67 |
+
Iran,Asia
|
68 |
+
Iraq,Asia
|
69 |
+
Israel,Asia
|
70 |
+
Japan,Asia
|
71 |
+
Jordan,Asia
|
72 |
+
Kazakhstan,Asia
|
73 |
+
"Korea, North",Asia
|
74 |
+
"Korea, South",Asia
|
75 |
+
Kuwait,Asia
|
76 |
+
Kyrgyzstan,Asia
|
77 |
+
Laos,Asia
|
78 |
+
Lebanon,Asia
|
79 |
+
Malaysia,Asia
|
80 |
+
Maldives,Asia
|
81 |
+
Mongolia,Asia
|
82 |
+
Nepal,Asia
|
83 |
+
Oman,Asia
|
84 |
+
Pakistan,Asia
|
85 |
+
Philippines,Asia
|
86 |
+
Qatar,Asia
|
87 |
+
Russian Federation,Asia
|
88 |
+
Saudi Arabia,Asia
|
89 |
+
Singapore,Asia
|
90 |
+
Sri Lanka,Asia
|
91 |
+
Syria,Asia
|
92 |
+
Tajikistan,Asia
|
93 |
+
Thailand,Asia
|
94 |
+
Turkey,Asia
|
95 |
+
Turkmenistan,Asia
|
96 |
+
United Arab Emirates,Asia
|
97 |
+
Uzbekistan,Asia
|
98 |
+
Vietnam,Asia
|
99 |
+
Yemen,Asia
|
100 |
+
Albania,Europe
|
101 |
+
Andorra,Europe
|
102 |
+
Armenia,Europe
|
103 |
+
Austria,Europe
|
104 |
+
Azerbaijan,Europe
|
105 |
+
Belarus,Europe
|
106 |
+
Belgium,Europe
|
107 |
+
Bosnia and Herzegovina,Europe
|
108 |
+
Bulgaria,Europe
|
109 |
+
Croatia,Europe
|
110 |
+
Cyprus,Europe
|
111 |
+
CZ,Europe
|
112 |
+
Denmark,Europe
|
113 |
+
Estonia,Europe
|
114 |
+
Finland,Europe
|
115 |
+
France,Europe
|
116 |
+
Georgia,Europe
|
117 |
+
Germany,Europe
|
118 |
+
Greece,Europe
|
119 |
+
Hungary,Europe
|
120 |
+
Iceland,Europe
|
121 |
+
Ireland,Europe
|
122 |
+
Italy,Europe
|
123 |
+
Latvia,Europe
|
124 |
+
Liechtenstein,Europe
|
125 |
+
Lithuania,Europe
|
126 |
+
Luxembourg,Europe
|
127 |
+
Macedonia,Europe
|
128 |
+
Malta,Europe
|
129 |
+
Moldova,Europe
|
130 |
+
Monaco,Europe
|
131 |
+
Montenegro,Europe
|
132 |
+
Netherlands,Europe
|
133 |
+
Norway,Europe
|
134 |
+
Poland,Europe
|
135 |
+
Portugal,Europe
|
136 |
+
Romania,Europe
|
137 |
+
San Marino,Europe
|
138 |
+
Serbia,Europe
|
139 |
+
Slovakia,Europe
|
140 |
+
Slovenia,Europe
|
141 |
+
Spain,Europe
|
142 |
+
Sweden,Europe
|
143 |
+
Switzerland,Europe
|
144 |
+
Ukraine,Europe
|
145 |
+
United Kingdom,Europe
|
146 |
+
Vatican City,Europe
|
147 |
+
Antigua and Barbuda,North America
|
148 |
+
Bahamas,North America
|
149 |
+
Barbados,North America
|
150 |
+
Belize,North America
|
151 |
+
Canada,North America
|
152 |
+
Costa Rica,North America
|
153 |
+
Cuba,North America
|
154 |
+
Dominica,North America
|
155 |
+
Dominican Republic,North America
|
156 |
+
El Salvador,North America
|
157 |
+
Grenada,North America
|
158 |
+
Guatemala,North America
|
159 |
+
Haiti,North America
|
160 |
+
Honduras,North America
|
161 |
+
Jamaica,North America
|
162 |
+
Mexico,North America
|
163 |
+
Nicaragua,North America
|
164 |
+
Panama,North America
|
165 |
+
Saint Kitts and Nevis,North America
|
166 |
+
Saint Lucia,North America
|
167 |
+
Saint Vincent and the Grenadines,North America
|
168 |
+
Trinidad and Tobago,North America
|
169 |
+
US,North America
|
170 |
+
Australia,Oceania
|
171 |
+
Fiji,Oceania
|
172 |
+
Kiribati,Oceania
|
173 |
+
Marshall Islands,Oceania
|
174 |
+
Micronesia,Oceania
|
175 |
+
Nauru,Oceania
|
176 |
+
New Zealand,Oceania
|
177 |
+
Palau,Oceania
|
178 |
+
Papua New Guinea,Oceania
|
179 |
+
Samoa,Oceania
|
180 |
+
Solomon Islands,Oceania
|
181 |
+
Tonga,Oceania
|
182 |
+
Tuvalu,Oceania
|
183 |
+
Vanuatu,Oceania
|
184 |
+
Argentina,South America
|
185 |
+
Bolivia,South America
|
186 |
+
Brazil,South America
|
187 |
+
Chile,South America
|
188 |
+
Colombia,South America
|
189 |
+
Ecuador,South America
|
190 |
+
Guyana,South America
|
191 |
+
Paraguay,South America
|
192 |
+
Peru,South America
|
193 |
+
Suriname,South America
|
194 |
+
Uruguay,South America
|
195 |
+
Venezuela,South America
|
Assets/Countries/.ipynb_checkpoints/Country-Data-Origin-checkpoint.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Origin of the country data used in this project
|
2 |
+
|
3 |
+
I started by getting a list of countries on Github, from [
|
4 |
+
Daina Bouquin](https://github.com/dbouquin/IS_608/blob/master/NanosatDB_munging/Countries-Continents.csv), because it seemed relatively completey and contained continents. Then I started to think about secondary data that might be useful for exposing the bias in an algorithm and opted for the [World Happiness Report 2021](https://worldhappiness.report/ed/2021/#appendices-and-data). I added the continents to the countries in that file to ensure I could retain the initial categorization I used.
|
Assets/Countries/.ipynb_checkpoints/clean-countries-checkpoint.ipynb
ADDED
@@ -0,0 +1,2273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "daf46b53-319f-4973-9bb6-664135dd328e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd, spacy, nltk, numpy as np, re, ssl"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 56,
|
16 |
+
"id": "3cae7a11-7696-40fc-967e-7ecafcb2b0da",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_excel(\"Assets/Countries/DataPanelWHR2021C2.xls\")"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 57,
|
26 |
+
"id": "c1ebf3f3-1d38-4919-b60a-dc15e7bf907b",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/html": [
|
32 |
+
"<div>\n",
|
33 |
+
"<style scoped>\n",
|
34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
+
" vertical-align: middle;\n",
|
36 |
+
" }\n",
|
37 |
+
"\n",
|
38 |
+
" .dataframe tbody tr th {\n",
|
39 |
+
" vertical-align: top;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe thead th {\n",
|
43 |
+
" text-align: right;\n",
|
44 |
+
" }\n",
|
45 |
+
"</style>\n",
|
46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
+
" <thead>\n",
|
48 |
+
" <tr style=\"text-align: right;\">\n",
|
49 |
+
" <th></th>\n",
|
50 |
+
" <th>Country</th>\n",
|
51 |
+
" <th>year</th>\n",
|
52 |
+
" <th>Life Ladder</th>\n",
|
53 |
+
" <th>Log GDP per capita</th>\n",
|
54 |
+
" <th>Social support</th>\n",
|
55 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
56 |
+
" <th>Freedom to make life choices</th>\n",
|
57 |
+
" <th>Generosity</th>\n",
|
58 |
+
" <th>Perceptions of corruption</th>\n",
|
59 |
+
" <th>Positive affect</th>\n",
|
60 |
+
" <th>Negative affect</th>\n",
|
61 |
+
" </tr>\n",
|
62 |
+
" </thead>\n",
|
63 |
+
" <tbody>\n",
|
64 |
+
" <tr>\n",
|
65 |
+
" <th>0</th>\n",
|
66 |
+
" <td>Afghanistan</td>\n",
|
67 |
+
" <td>2008</td>\n",
|
68 |
+
" <td>3.723590</td>\n",
|
69 |
+
" <td>7.370100</td>\n",
|
70 |
+
" <td>0.450662</td>\n",
|
71 |
+
" <td>50.799999</td>\n",
|
72 |
+
" <td>0.718114</td>\n",
|
73 |
+
" <td>0.167640</td>\n",
|
74 |
+
" <td>0.881686</td>\n",
|
75 |
+
" <td>0.517637</td>\n",
|
76 |
+
" <td>0.258195</td>\n",
|
77 |
+
" </tr>\n",
|
78 |
+
" <tr>\n",
|
79 |
+
" <th>1</th>\n",
|
80 |
+
" <td>Afghanistan</td>\n",
|
81 |
+
" <td>2009</td>\n",
|
82 |
+
" <td>4.401778</td>\n",
|
83 |
+
" <td>7.539972</td>\n",
|
84 |
+
" <td>0.552308</td>\n",
|
85 |
+
" <td>51.200001</td>\n",
|
86 |
+
" <td>0.678896</td>\n",
|
87 |
+
" <td>0.190099</td>\n",
|
88 |
+
" <td>0.850035</td>\n",
|
89 |
+
" <td>0.583926</td>\n",
|
90 |
+
" <td>0.237092</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" <tr>\n",
|
93 |
+
" <th>2</th>\n",
|
94 |
+
" <td>Afghanistan</td>\n",
|
95 |
+
" <td>2010</td>\n",
|
96 |
+
" <td>4.758381</td>\n",
|
97 |
+
" <td>7.646709</td>\n",
|
98 |
+
" <td>0.539075</td>\n",
|
99 |
+
" <td>51.599998</td>\n",
|
100 |
+
" <td>0.600127</td>\n",
|
101 |
+
" <td>0.120590</td>\n",
|
102 |
+
" <td>0.706766</td>\n",
|
103 |
+
" <td>0.618265</td>\n",
|
104 |
+
" <td>0.275324</td>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" <tr>\n",
|
107 |
+
" <th>3</th>\n",
|
108 |
+
" <td>Afghanistan</td>\n",
|
109 |
+
" <td>2011</td>\n",
|
110 |
+
" <td>3.831719</td>\n",
|
111 |
+
" <td>7.619532</td>\n",
|
112 |
+
" <td>0.521104</td>\n",
|
113 |
+
" <td>51.919998</td>\n",
|
114 |
+
" <td>0.495901</td>\n",
|
115 |
+
" <td>0.162427</td>\n",
|
116 |
+
" <td>0.731109</td>\n",
|
117 |
+
" <td>0.611387</td>\n",
|
118 |
+
" <td>0.267175</td>\n",
|
119 |
+
" </tr>\n",
|
120 |
+
" <tr>\n",
|
121 |
+
" <th>4</th>\n",
|
122 |
+
" <td>Afghanistan</td>\n",
|
123 |
+
" <td>2012</td>\n",
|
124 |
+
" <td>3.782938</td>\n",
|
125 |
+
" <td>7.705479</td>\n",
|
126 |
+
" <td>0.520637</td>\n",
|
127 |
+
" <td>52.240002</td>\n",
|
128 |
+
" <td>0.530935</td>\n",
|
129 |
+
" <td>0.236032</td>\n",
|
130 |
+
" <td>0.775620</td>\n",
|
131 |
+
" <td>0.710385</td>\n",
|
132 |
+
" <td>0.267919</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" </tbody>\n",
|
135 |
+
"</table>\n",
|
136 |
+
"</div>"
|
137 |
+
],
|
138 |
+
"text/plain": [
|
139 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
140 |
+
"0 Afghanistan 2008 3.723590 7.370100 0.450662 \n",
|
141 |
+
"1 Afghanistan 2009 4.401778 7.539972 0.552308 \n",
|
142 |
+
"2 Afghanistan 2010 4.758381 7.646709 0.539075 \n",
|
143 |
+
"3 Afghanistan 2011 3.831719 7.619532 0.521104 \n",
|
144 |
+
"4 Afghanistan 2012 3.782938 7.705479 0.520637 \n",
|
145 |
+
"\n",
|
146 |
+
" Healthy life expectancy at birth Freedom to make life choices Generosity \\\n",
|
147 |
+
"0 50.799999 0.718114 0.167640 \n",
|
148 |
+
"1 51.200001 0.678896 0.190099 \n",
|
149 |
+
"2 51.599998 0.600127 0.120590 \n",
|
150 |
+
"3 51.919998 0.495901 0.162427 \n",
|
151 |
+
"4 52.240002 0.530935 0.236032 \n",
|
152 |
+
"\n",
|
153 |
+
" Perceptions of corruption Positive affect Negative affect \n",
|
154 |
+
"0 0.881686 0.517637 0.258195 \n",
|
155 |
+
"1 0.850035 0.583926 0.237092 \n",
|
156 |
+
"2 0.706766 0.618265 0.275324 \n",
|
157 |
+
"3 0.731109 0.611387 0.267175 \n",
|
158 |
+
"4 0.775620 0.710385 0.267919 "
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 57,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"df.head()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 59,
|
173 |
+
"id": "a1d054e6-8ca7-4675-913e-b0b500afe105",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"df_sorted = df.sort_values(by=['year'], ascending = False)"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 60,
|
183 |
+
"id": "42d08d97-fa68-40dc-9cfd-b0aa8acbb838",
|
184 |
+
"metadata": {},
|
185 |
+
"outputs": [
|
186 |
+
{
|
187 |
+
"data": {
|
188 |
+
"text/html": [
|
189 |
+
"<div>\n",
|
190 |
+
"<style scoped>\n",
|
191 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
192 |
+
" vertical-align: middle;\n",
|
193 |
+
" }\n",
|
194 |
+
"\n",
|
195 |
+
" .dataframe tbody tr th {\n",
|
196 |
+
" vertical-align: top;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe thead th {\n",
|
200 |
+
" text-align: right;\n",
|
201 |
+
" }\n",
|
202 |
+
"</style>\n",
|
203 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
204 |
+
" <thead>\n",
|
205 |
+
" <tr style=\"text-align: right;\">\n",
|
206 |
+
" <th></th>\n",
|
207 |
+
" <th>Country</th>\n",
|
208 |
+
" <th>year</th>\n",
|
209 |
+
" <th>Life Ladder</th>\n",
|
210 |
+
" <th>Log GDP per capita</th>\n",
|
211 |
+
" <th>Social support</th>\n",
|
212 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
213 |
+
" <th>Freedom to make life choices</th>\n",
|
214 |
+
" <th>Generosity</th>\n",
|
215 |
+
" <th>Perceptions of corruption</th>\n",
|
216 |
+
" <th>Positive affect</th>\n",
|
217 |
+
" <th>Negative affect</th>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" </thead>\n",
|
220 |
+
" <tbody>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1948</th>\n",
|
223 |
+
" <td>Zimbabwe</td>\n",
|
224 |
+
" <td>2020</td>\n",
|
225 |
+
" <td>3.159802</td>\n",
|
226 |
+
" <td>7.828757</td>\n",
|
227 |
+
" <td>0.717243</td>\n",
|
228 |
+
" <td>56.799999</td>\n",
|
229 |
+
" <td>0.643303</td>\n",
|
230 |
+
" <td>-0.008696</td>\n",
|
231 |
+
" <td>0.788523</td>\n",
|
232 |
+
" <td>0.702573</td>\n",
|
233 |
+
" <td>0.345736</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>174</th>\n",
|
237 |
+
" <td>Benin</td>\n",
|
238 |
+
" <td>2020</td>\n",
|
239 |
+
" <td>4.407746</td>\n",
|
240 |
+
" <td>8.102292</td>\n",
|
241 |
+
" <td>0.506636</td>\n",
|
242 |
+
" <td>55.099998</td>\n",
|
243 |
+
" <td>0.783115</td>\n",
|
244 |
+
" <td>-0.083489</td>\n",
|
245 |
+
" <td>0.531884</td>\n",
|
246 |
+
" <td>0.608585</td>\n",
|
247 |
+
" <td>0.304512</td>\n",
|
248 |
+
" </tr>\n",
|
249 |
+
" <tr>\n",
|
250 |
+
" <th>1835</th>\n",
|
251 |
+
" <td>United Kingdom</td>\n",
|
252 |
+
" <td>2020</td>\n",
|
253 |
+
" <td>6.798177</td>\n",
|
254 |
+
" <td>10.625811</td>\n",
|
255 |
+
" <td>0.929353</td>\n",
|
256 |
+
" <td>72.699997</td>\n",
|
257 |
+
" <td>0.884624</td>\n",
|
258 |
+
" <td>0.202508</td>\n",
|
259 |
+
" <td>0.490204</td>\n",
|
260 |
+
" <td>0.758164</td>\n",
|
261 |
+
" <td>0.224655</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th>1394</th>\n",
|
265 |
+
" <td>Philippines</td>\n",
|
266 |
+
" <td>2020</td>\n",
|
267 |
+
" <td>5.079585</td>\n",
|
268 |
+
" <td>9.061443</td>\n",
|
269 |
+
" <td>0.781140</td>\n",
|
270 |
+
" <td>62.099998</td>\n",
|
271 |
+
" <td>0.932042</td>\n",
|
272 |
+
" <td>-0.115543</td>\n",
|
273 |
+
" <td>0.744284</td>\n",
|
274 |
+
" <td>0.803562</td>\n",
|
275 |
+
" <td>0.326889</td>\n",
|
276 |
+
" </tr>\n",
|
277 |
+
" <tr>\n",
|
278 |
+
" <th>785</th>\n",
|
279 |
+
" <td>Iraq</td>\n",
|
280 |
+
" <td>2020</td>\n",
|
281 |
+
" <td>4.785165</td>\n",
|
282 |
+
" <td>9.167186</td>\n",
|
283 |
+
" <td>0.707847</td>\n",
|
284 |
+
" <td>61.400002</td>\n",
|
285 |
+
" <td>0.700215</td>\n",
|
286 |
+
" <td>-0.020748</td>\n",
|
287 |
+
" <td>0.849109</td>\n",
|
288 |
+
" <td>0.644464</td>\n",
|
289 |
+
" <td>0.531539</td>\n",
|
290 |
+
" </tr>\n",
|
291 |
+
" </tbody>\n",
|
292 |
+
"</table>\n",
|
293 |
+
"</div>"
|
294 |
+
],
|
295 |
+
"text/plain": [
|
296 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
297 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
298 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
299 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
300 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
301 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
302 |
+
"\n",
|
303 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
304 |
+
"1948 56.799999 0.643303 \n",
|
305 |
+
"174 55.099998 0.783115 \n",
|
306 |
+
"1835 72.699997 0.884624 \n",
|
307 |
+
"1394 62.099998 0.932042 \n",
|
308 |
+
"785 61.400002 0.700215 \n",
|
309 |
+
"\n",
|
310 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \n",
|
311 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
312 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
313 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
314 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
315 |
+
"785 -0.020748 0.849109 0.644464 0.531539 "
|
316 |
+
]
|
317 |
+
},
|
318 |
+
"execution_count": 60,
|
319 |
+
"metadata": {},
|
320 |
+
"output_type": "execute_result"
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"source": [
|
324 |
+
"df_sorted.head()"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 61,
|
330 |
+
"id": "abb8954c-106f-42d1-bf2a-0200b8927306",
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [],
|
333 |
+
"source": [
|
334 |
+
"df_dedup = df_sorted.drop_duplicates(subset=['Country'])"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": 62,
|
340 |
+
"id": "969f5fcf-5dc6-4ce3-93f7-0f35473f3c73",
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [
|
343 |
+
{
|
344 |
+
"data": {
|
345 |
+
"text/html": [
|
346 |
+
"<div>\n",
|
347 |
+
"<style scoped>\n",
|
348 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
349 |
+
" vertical-align: middle;\n",
|
350 |
+
" }\n",
|
351 |
+
"\n",
|
352 |
+
" .dataframe tbody tr th {\n",
|
353 |
+
" vertical-align: top;\n",
|
354 |
+
" }\n",
|
355 |
+
"\n",
|
356 |
+
" .dataframe thead th {\n",
|
357 |
+
" text-align: right;\n",
|
358 |
+
" }\n",
|
359 |
+
"</style>\n",
|
360 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
361 |
+
" <thead>\n",
|
362 |
+
" <tr style=\"text-align: right;\">\n",
|
363 |
+
" <th></th>\n",
|
364 |
+
" <th>Country</th>\n",
|
365 |
+
" <th>year</th>\n",
|
366 |
+
" <th>Life Ladder</th>\n",
|
367 |
+
" <th>Log GDP per capita</th>\n",
|
368 |
+
" <th>Social support</th>\n",
|
369 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
370 |
+
" <th>Freedom to make life choices</th>\n",
|
371 |
+
" <th>Generosity</th>\n",
|
372 |
+
" <th>Perceptions of corruption</th>\n",
|
373 |
+
" <th>Positive affect</th>\n",
|
374 |
+
" <th>Negative affect</th>\n",
|
375 |
+
" </tr>\n",
|
376 |
+
" </thead>\n",
|
377 |
+
" <tbody>\n",
|
378 |
+
" <tr>\n",
|
379 |
+
" <th>1948</th>\n",
|
380 |
+
" <td>Zimbabwe</td>\n",
|
381 |
+
" <td>2020</td>\n",
|
382 |
+
" <td>3.159802</td>\n",
|
383 |
+
" <td>7.828757</td>\n",
|
384 |
+
" <td>0.717243</td>\n",
|
385 |
+
" <td>56.799999</td>\n",
|
386 |
+
" <td>0.643303</td>\n",
|
387 |
+
" <td>-0.008696</td>\n",
|
388 |
+
" <td>0.788523</td>\n",
|
389 |
+
" <td>0.702573</td>\n",
|
390 |
+
" <td>0.345736</td>\n",
|
391 |
+
" </tr>\n",
|
392 |
+
" <tr>\n",
|
393 |
+
" <th>174</th>\n",
|
394 |
+
" <td>Benin</td>\n",
|
395 |
+
" <td>2020</td>\n",
|
396 |
+
" <td>4.407746</td>\n",
|
397 |
+
" <td>8.102292</td>\n",
|
398 |
+
" <td>0.506636</td>\n",
|
399 |
+
" <td>55.099998</td>\n",
|
400 |
+
" <td>0.783115</td>\n",
|
401 |
+
" <td>-0.083489</td>\n",
|
402 |
+
" <td>0.531884</td>\n",
|
403 |
+
" <td>0.608585</td>\n",
|
404 |
+
" <td>0.304512</td>\n",
|
405 |
+
" </tr>\n",
|
406 |
+
" <tr>\n",
|
407 |
+
" <th>1835</th>\n",
|
408 |
+
" <td>United Kingdom</td>\n",
|
409 |
+
" <td>2020</td>\n",
|
410 |
+
" <td>6.798177</td>\n",
|
411 |
+
" <td>10.625811</td>\n",
|
412 |
+
" <td>0.929353</td>\n",
|
413 |
+
" <td>72.699997</td>\n",
|
414 |
+
" <td>0.884624</td>\n",
|
415 |
+
" <td>0.202508</td>\n",
|
416 |
+
" <td>0.490204</td>\n",
|
417 |
+
" <td>0.758164</td>\n",
|
418 |
+
" <td>0.224655</td>\n",
|
419 |
+
" </tr>\n",
|
420 |
+
" <tr>\n",
|
421 |
+
" <th>1394</th>\n",
|
422 |
+
" <td>Philippines</td>\n",
|
423 |
+
" <td>2020</td>\n",
|
424 |
+
" <td>5.079585</td>\n",
|
425 |
+
" <td>9.061443</td>\n",
|
426 |
+
" <td>0.781140</td>\n",
|
427 |
+
" <td>62.099998</td>\n",
|
428 |
+
" <td>0.932042</td>\n",
|
429 |
+
" <td>-0.115543</td>\n",
|
430 |
+
" <td>0.744284</td>\n",
|
431 |
+
" <td>0.803562</td>\n",
|
432 |
+
" <td>0.326889</td>\n",
|
433 |
+
" </tr>\n",
|
434 |
+
" <tr>\n",
|
435 |
+
" <th>785</th>\n",
|
436 |
+
" <td>Iraq</td>\n",
|
437 |
+
" <td>2020</td>\n",
|
438 |
+
" <td>4.785165</td>\n",
|
439 |
+
" <td>9.167186</td>\n",
|
440 |
+
" <td>0.707847</td>\n",
|
441 |
+
" <td>61.400002</td>\n",
|
442 |
+
" <td>0.700215</td>\n",
|
443 |
+
" <td>-0.020748</td>\n",
|
444 |
+
" <td>0.849109</td>\n",
|
445 |
+
" <td>0.644464</td>\n",
|
446 |
+
" <td>0.531539</td>\n",
|
447 |
+
" </tr>\n",
|
448 |
+
" </tbody>\n",
|
449 |
+
"</table>\n",
|
450 |
+
"</div>"
|
451 |
+
],
|
452 |
+
"text/plain": [
|
453 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
454 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
455 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
456 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
457 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
458 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
459 |
+
"\n",
|
460 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
461 |
+
"1948 56.799999 0.643303 \n",
|
462 |
+
"174 55.099998 0.783115 \n",
|
463 |
+
"1835 72.699997 0.884624 \n",
|
464 |
+
"1394 62.099998 0.932042 \n",
|
465 |
+
"785 61.400002 0.700215 \n",
|
466 |
+
"\n",
|
467 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \n",
|
468 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
469 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
470 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
471 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
472 |
+
"785 -0.020748 0.849109 0.644464 0.531539 "
|
473 |
+
]
|
474 |
+
},
|
475 |
+
"execution_count": 62,
|
476 |
+
"metadata": {},
|
477 |
+
"output_type": "execute_result"
|
478 |
+
}
|
479 |
+
],
|
480 |
+
"source": [
|
481 |
+
"df_dedup.head()"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": 63,
|
487 |
+
"id": "d080546c-4698-4edd-8b76-e3c94aee9862",
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [
|
490 |
+
{
|
491 |
+
"data": {
|
492 |
+
"text/plain": [
|
493 |
+
"1949"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
"execution_count": 63,
|
497 |
+
"metadata": {},
|
498 |
+
"output_type": "execute_result"
|
499 |
+
}
|
500 |
+
],
|
501 |
+
"source": [
|
502 |
+
"len(df_sorted)"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": 64,
|
508 |
+
"id": "6a817f5c-e871-4d69-9368-00a90efc6007",
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [
|
511 |
+
{
|
512 |
+
"data": {
|
513 |
+
"text/plain": [
|
514 |
+
"166"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
"execution_count": 64,
|
518 |
+
"metadata": {},
|
519 |
+
"output_type": "execute_result"
|
520 |
+
}
|
521 |
+
],
|
522 |
+
"source": [
|
523 |
+
"len(df_dedup)"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"cell_type": "code",
|
528 |
+
"execution_count": 65,
|
529 |
+
"id": "d6640a42-064e-4b31-b89d-de4f7d4240a3",
|
530 |
+
"metadata": {},
|
531 |
+
"outputs": [
|
532 |
+
{
|
533 |
+
"data": {
|
534 |
+
"text/html": [
|
535 |
+
"<div>\n",
|
536 |
+
"<style scoped>\n",
|
537 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
538 |
+
" vertical-align: middle;\n",
|
539 |
+
" }\n",
|
540 |
+
"\n",
|
541 |
+
" .dataframe tbody tr th {\n",
|
542 |
+
" vertical-align: top;\n",
|
543 |
+
" }\n",
|
544 |
+
"\n",
|
545 |
+
" .dataframe thead th {\n",
|
546 |
+
" text-align: right;\n",
|
547 |
+
" }\n",
|
548 |
+
"</style>\n",
|
549 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
550 |
+
" <thead>\n",
|
551 |
+
" <tr style=\"text-align: right;\">\n",
|
552 |
+
" <th></th>\n",
|
553 |
+
" <th>Country</th>\n",
|
554 |
+
" <th>Continent</th>\n",
|
555 |
+
" </tr>\n",
|
556 |
+
" </thead>\n",
|
557 |
+
" <tbody>\n",
|
558 |
+
" <tr>\n",
|
559 |
+
" <th>0</th>\n",
|
560 |
+
" <td>Algeria</td>\n",
|
561 |
+
" <td>Africa</td>\n",
|
562 |
+
" </tr>\n",
|
563 |
+
" <tr>\n",
|
564 |
+
" <th>1</th>\n",
|
565 |
+
" <td>Angola</td>\n",
|
566 |
+
" <td>Africa</td>\n",
|
567 |
+
" </tr>\n",
|
568 |
+
" <tr>\n",
|
569 |
+
" <th>2</th>\n",
|
570 |
+
" <td>Benin</td>\n",
|
571 |
+
" <td>Africa</td>\n",
|
572 |
+
" </tr>\n",
|
573 |
+
" <tr>\n",
|
574 |
+
" <th>3</th>\n",
|
575 |
+
" <td>Botswana</td>\n",
|
576 |
+
" <td>Africa</td>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" <tr>\n",
|
579 |
+
" <th>4</th>\n",
|
580 |
+
" <td>Burkina</td>\n",
|
581 |
+
" <td>Africa</td>\n",
|
582 |
+
" </tr>\n",
|
583 |
+
" </tbody>\n",
|
584 |
+
"</table>\n",
|
585 |
+
"</div>"
|
586 |
+
],
|
587 |
+
"text/plain": [
|
588 |
+
" Country Continent\n",
|
589 |
+
"0 Algeria Africa\n",
|
590 |
+
"1 Angola Africa\n",
|
591 |
+
"2 Benin Africa\n",
|
592 |
+
"3 Botswana Africa\n",
|
593 |
+
"4 Burkina Africa"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
"execution_count": 65,
|
597 |
+
"metadata": {},
|
598 |
+
"output_type": "execute_result"
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"source": [
|
602 |
+
"df_csv = pd.read_csv(\"Assets/Countries/countries.csv\")\n",
|
603 |
+
"df_csv.head()"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": 18,
|
609 |
+
"id": "a6e6f52e-cff7-4d78-b630-e71e07fa8842",
|
610 |
+
"metadata": {},
|
611 |
+
"outputs": [
|
612 |
+
{
|
613 |
+
"data": {
|
614 |
+
"text/plain": [
|
615 |
+
"194"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
"execution_count": 18,
|
619 |
+
"metadata": {},
|
620 |
+
"output_type": "execute_result"
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"source": [
|
624 |
+
"len(df_csv)"
|
625 |
+
]
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"cell_type": "code",
|
629 |
+
"execution_count": 66,
|
630 |
+
"id": "edaae740-75bf-42a2-afa6-ebbbbf50d792",
|
631 |
+
"metadata": {},
|
632 |
+
"outputs": [],
|
633 |
+
"source": [
|
634 |
+
"c1 = df_dedup[\"Country\"]\n",
|
635 |
+
"c2 = list(df_csv[\"Country\"])\n",
|
636 |
+
"c3 = [(country, country in c2) for country in c1]"
|
637 |
+
]
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"cell_type": "code",
|
641 |
+
"execution_count": 67,
|
642 |
+
"id": "5e86b02e-e5a3-4eaf-b045-74f0d0cfea08",
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [
|
645 |
+
{
|
646 |
+
"data": {
|
647 |
+
"text/plain": [
|
648 |
+
"True"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
"execution_count": 67,
|
652 |
+
"metadata": {},
|
653 |
+
"output_type": "execute_result"
|
654 |
+
}
|
655 |
+
],
|
656 |
+
"source": [
|
657 |
+
"\"Zimbabwe\" in c2"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"cell_type": "code",
|
662 |
+
"execution_count": 68,
|
663 |
+
"id": "921765a7-6f40-4d6a-9403-f5f8d8f26a65",
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [
|
666 |
+
{
|
667 |
+
"data": {
|
668 |
+
"text/plain": [
|
669 |
+
"[('Zimbabwe', True),\n",
|
670 |
+
" ('Benin', True),\n",
|
671 |
+
" ('United Kingdom', True),\n",
|
672 |
+
" ('Philippines', True),\n",
|
673 |
+
" ('Iraq', True),\n",
|
674 |
+
" ('Belgium', True),\n",
|
675 |
+
" ('Iran', True),\n",
|
676 |
+
" ('Poland', True),\n",
|
677 |
+
" ('Portugal', True),\n",
|
678 |
+
" ('India', True),\n",
|
679 |
+
" ('Israel', True),\n",
|
680 |
+
" ('Iceland', True),\n",
|
681 |
+
" ('United Arab Emirates', True),\n",
|
682 |
+
" ('Hungary', True),\n",
|
683 |
+
" ('Hong Kong S.A.R. of China', False),\n",
|
684 |
+
" ('Bolivia', True),\n",
|
685 |
+
" ('Russia', False),\n",
|
686 |
+
" ('Saudi Arabia', True),\n",
|
687 |
+
" ('Ireland', True),\n",
|
688 |
+
" ('Italy', True),\n",
|
689 |
+
" ('Ukraine', True),\n",
|
690 |
+
" ('Kenya', True),\n",
|
691 |
+
" ('Latvia', True),\n",
|
692 |
+
" ('Laos', True),\n",
|
693 |
+
" ('Nigeria', True),\n",
|
694 |
+
" ('Austria', True),\n",
|
695 |
+
" ('Kyrgyzstan', True),\n",
|
696 |
+
" ('North Macedonia', False),\n",
|
697 |
+
" ('Kosovo', False),\n",
|
698 |
+
" ('Norway', True),\n",
|
699 |
+
" ('United States', False),\n",
|
700 |
+
" ('Kazakhstan', True),\n",
|
701 |
+
" ('Bahrain', True),\n",
|
702 |
+
" ('Uruguay', True),\n",
|
703 |
+
" ('Jordan', True),\n",
|
704 |
+
" ('Japan', True),\n",
|
705 |
+
" ('Bangladesh', True),\n",
|
706 |
+
" ('Ivory Coast', True),\n",
|
707 |
+
" ('Bosnia and Herzegovina', True),\n",
|
708 |
+
" ('Greece', True),\n",
|
709 |
+
" ('Australia', True),\n",
|
710 |
+
" ('Croatia', True),\n",
|
711 |
+
" ('Tunisia', True),\n",
|
712 |
+
" ('Spain', True),\n",
|
713 |
+
" ('Denmark', True),\n",
|
714 |
+
" ('Cameroon', True),\n",
|
715 |
+
" ('Czech Republic', False),\n",
|
716 |
+
" ('Cyprus', True),\n",
|
717 |
+
" ('Sweden', True),\n",
|
718 |
+
" ('Canada', True),\n",
|
719 |
+
" ('South Korea', False),\n",
|
720 |
+
" ('Switzerland', True),\n",
|
721 |
+
" ('Thailand', True),\n",
|
722 |
+
" ('Taiwan Province of China', False),\n",
|
723 |
+
" ('Colombia', True),\n",
|
724 |
+
" ('Tajikistan', True),\n",
|
725 |
+
" ('Tanzania', True),\n",
|
726 |
+
" ('China', True),\n",
|
727 |
+
" ('Dominican Republic', True),\n",
|
728 |
+
" ('Cambodia', True),\n",
|
729 |
+
" ('Ghana', True),\n",
|
730 |
+
" ('Slovakia', True),\n",
|
731 |
+
" ('Serbia', True),\n",
|
732 |
+
" ('Uganda', True),\n",
|
733 |
+
" ('Germany', True),\n",
|
734 |
+
" ('Georgia', True),\n",
|
735 |
+
" ('Brazil', True),\n",
|
736 |
+
" ('France', True),\n",
|
737 |
+
" ('Bulgaria', True),\n",
|
738 |
+
" ('Finland', True),\n",
|
739 |
+
" ('Ecuador', True),\n",
|
740 |
+
" ('Ethiopia', True),\n",
|
741 |
+
" ('Slovenia', True),\n",
|
742 |
+
" ('Estonia', True),\n",
|
743 |
+
" ('El Salvador', True),\n",
|
744 |
+
" ('Turkey', True),\n",
|
745 |
+
" ('South Africa', True),\n",
|
746 |
+
" ('Egypt', True),\n",
|
747 |
+
" ('Venezuela', True),\n",
|
748 |
+
" ('Chile', True),\n",
|
749 |
+
" ('Lithuania', True),\n",
|
750 |
+
" ('Moldova', True),\n",
|
751 |
+
" ('Netherlands', True),\n",
|
752 |
+
" ('Mongolia', True),\n",
|
753 |
+
" ('Mauritius', True),\n",
|
754 |
+
" ('Mexico', True),\n",
|
755 |
+
" ('New Zealand', True),\n",
|
756 |
+
" ('Namibia', True),\n",
|
757 |
+
" ('Myanmar', False),\n",
|
758 |
+
" ('Malta', True),\n",
|
759 |
+
" ('Zambia', True),\n",
|
760 |
+
" ('Argentina', True),\n",
|
761 |
+
" ('Morocco', True),\n",
|
762 |
+
" ('Albania', True),\n",
|
763 |
+
" ('Montenegro', True),\n",
|
764 |
+
" ('Guinea', True),\n",
|
765 |
+
" ('Yemen', True),\n",
|
766 |
+
" ('Guatemala', True),\n",
|
767 |
+
" ('Malaysia', True),\n",
|
768 |
+
" ('Rwanda', True),\n",
|
769 |
+
" ('Sri Lanka', True),\n",
|
770 |
+
" ('Malawi', True),\n",
|
771 |
+
" ('Nepal', True),\n",
|
772 |
+
" ('Swaziland', True),\n",
|
773 |
+
" ('Romania', True),\n",
|
774 |
+
" ('Senegal', True),\n",
|
775 |
+
" ('Honduras', True),\n",
|
776 |
+
" ('Mali', True),\n",
|
777 |
+
" ('Mauritania', True),\n",
|
778 |
+
" ('Turkmenistan', True),\n",
|
779 |
+
" ('Burkina Faso', False),\n",
|
780 |
+
" ('Algeria', True),\n",
|
781 |
+
" ('Botswana', True),\n",
|
782 |
+
" ('Sierra Leone', True),\n",
|
783 |
+
" ('Mozambique', True),\n",
|
784 |
+
" ('Singapore', True),\n",
|
785 |
+
" ('Gambia', True),\n",
|
786 |
+
" ('Gabon', True),\n",
|
787 |
+
" ('Indonesia', True),\n",
|
788 |
+
" ('Azerbaijan', True),\n",
|
789 |
+
" ('Chad', True),\n",
|
790 |
+
" ('Liberia', True),\n",
|
791 |
+
" ('Libya', True),\n",
|
792 |
+
" ('Pakistan', True),\n",
|
793 |
+
" ('Armenia', True),\n",
|
794 |
+
" ('Comoros', True),\n",
|
795 |
+
" ('Afghanistan', True),\n",
|
796 |
+
" ('Palestinian Territories', False),\n",
|
797 |
+
" ('Nicaragua', True),\n",
|
798 |
+
" ('Niger', True),\n",
|
799 |
+
" ('Lebanon', True),\n",
|
800 |
+
" ('Lesotho', True),\n",
|
801 |
+
" ('Uzbekistan', True),\n",
|
802 |
+
" ('North Cyprus', False),\n",
|
803 |
+
" ('Kuwait', True),\n",
|
804 |
+
" ('Congo (Brazzaville)', False),\n",
|
805 |
+
" ('Peru', True),\n",
|
806 |
+
" ('Vietnam', True),\n",
|
807 |
+
" ('Togo', True),\n",
|
808 |
+
" ('Belarus', True),\n",
|
809 |
+
" ('Madagascar', True),\n",
|
810 |
+
" ('Costa Rica', True),\n",
|
811 |
+
" ('Luxembourg', True),\n",
|
812 |
+
" ('Panama', True),\n",
|
813 |
+
" ('Paraguay', True),\n",
|
814 |
+
" ('Jamaica', True),\n",
|
815 |
+
" ('Maldives', True),\n",
|
816 |
+
" ('Haiti', True),\n",
|
817 |
+
" ('Burundi', True),\n",
|
818 |
+
" ('Congo (Kinshasa)', False),\n",
|
819 |
+
" ('Central African Republic', True),\n",
|
820 |
+
" ('Trinidad and Tobago', True),\n",
|
821 |
+
" ('South Sudan', True),\n",
|
822 |
+
" ('Somalia', True),\n",
|
823 |
+
" ('Syria', True),\n",
|
824 |
+
" ('Qatar', True),\n",
|
825 |
+
" ('Bhutan', True),\n",
|
826 |
+
" ('Sudan', True),\n",
|
827 |
+
" ('Angola', True),\n",
|
828 |
+
" ('Belize', True),\n",
|
829 |
+
" ('Suriname', True),\n",
|
830 |
+
" ('Somaliland region', False),\n",
|
831 |
+
" ('Oman', True),\n",
|
832 |
+
" ('Djibouti', True),\n",
|
833 |
+
" ('Guyana', True),\n",
|
834 |
+
" ('Cuba', True)]"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
"execution_count": 68,
|
838 |
+
"metadata": {},
|
839 |
+
"output_type": "execute_result"
|
840 |
+
}
|
841 |
+
],
|
842 |
+
"source": [
|
843 |
+
"c3"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": 37,
|
849 |
+
"id": "ff74b057-7281-4ab2-82c5-367e949fbbed",
|
850 |
+
"metadata": {},
|
851 |
+
"outputs": [
|
852 |
+
{
|
853 |
+
"data": {
|
854 |
+
"text/plain": [
|
855 |
+
"['Hong Kong S.A.R. of China',\n",
|
856 |
+
" 'Russia',\n",
|
857 |
+
" 'North Macedonia',\n",
|
858 |
+
" 'Kosovo',\n",
|
859 |
+
" 'United States',\n",
|
860 |
+
" 'Czech Republic',\n",
|
861 |
+
" 'South Korea',\n",
|
862 |
+
" 'Taiwan Province of China',\n",
|
863 |
+
" 'Myanmar',\n",
|
864 |
+
" 'Burkina Faso',\n",
|
865 |
+
" 'Palestinian Territories',\n",
|
866 |
+
" 'North Cyprus',\n",
|
867 |
+
" 'Congo (Brazzaville)',\n",
|
868 |
+
" 'Congo (Kinshasa)',\n",
|
869 |
+
" 'Somaliland region']"
|
870 |
+
]
|
871 |
+
},
|
872 |
+
"execution_count": 37,
|
873 |
+
"metadata": {},
|
874 |
+
"output_type": "execute_result"
|
875 |
+
}
|
876 |
+
],
|
877 |
+
"source": [
|
878 |
+
"num = 0\n",
|
879 |
+
"missing = []\n",
|
880 |
+
"for pair in c3:\n",
|
881 |
+
" if pair[1]:\n",
|
882 |
+
" num +=1\n",
|
883 |
+
" else:\n",
|
884 |
+
" missing.append(pair[0]) \n",
|
885 |
+
"num\n",
|
886 |
+
"missing"
|
887 |
+
]
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"cell_type": "code",
|
891 |
+
"execution_count": 44,
|
892 |
+
"id": "50f20260-3ed6-4f4e-a558-e3c6374ecb26",
|
893 |
+
"metadata": {},
|
894 |
+
"outputs": [
|
895 |
+
{
|
896 |
+
"data": {
|
897 |
+
"text/plain": [
|
898 |
+
"'Africa'"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"execution_count": 44,
|
902 |
+
"metadata": {},
|
903 |
+
"output_type": "execute_result"
|
904 |
+
}
|
905 |
+
],
|
906 |
+
"source": [
|
907 |
+
"df_csv.loc[df_csv['Country'] == \"Madagascar\", 'Continent'].iloc[0]"
|
908 |
+
]
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"cell_type": "code",
|
912 |
+
"execution_count": 50,
|
913 |
+
"id": "9dfa66ef-1c2b-4893-8993-107c2e02a2c8",
|
914 |
+
"metadata": {},
|
915 |
+
"outputs": [
|
916 |
+
{
|
917 |
+
"data": {
|
918 |
+
"text/html": [
|
919 |
+
"<div>\n",
|
920 |
+
"<style scoped>\n",
|
921 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
922 |
+
" vertical-align: middle;\n",
|
923 |
+
" }\n",
|
924 |
+
"\n",
|
925 |
+
" .dataframe tbody tr th {\n",
|
926 |
+
" vertical-align: top;\n",
|
927 |
+
" }\n",
|
928 |
+
"\n",
|
929 |
+
" .dataframe thead th {\n",
|
930 |
+
" text-align: right;\n",
|
931 |
+
" }\n",
|
932 |
+
"</style>\n",
|
933 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
934 |
+
" <thead>\n",
|
935 |
+
" <tr style=\"text-align: right;\">\n",
|
936 |
+
" <th></th>\n",
|
937 |
+
" <th>Country name</th>\n",
|
938 |
+
" <th>year</th>\n",
|
939 |
+
" <th>Life Ladder</th>\n",
|
940 |
+
" <th>Log GDP per capita</th>\n",
|
941 |
+
" <th>Social support</th>\n",
|
942 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
943 |
+
" <th>Freedom to make life choices</th>\n",
|
944 |
+
" <th>Generosity</th>\n",
|
945 |
+
" <th>Perceptions of corruption</th>\n",
|
946 |
+
" <th>Positive affect</th>\n",
|
947 |
+
" <th>Negative affect</th>\n",
|
948 |
+
" <th>Continent</th>\n",
|
949 |
+
" </tr>\n",
|
950 |
+
" </thead>\n",
|
951 |
+
" <tbody>\n",
|
952 |
+
" <tr>\n",
|
953 |
+
" <th>1948</th>\n",
|
954 |
+
" <td>Zimbabwe</td>\n",
|
955 |
+
" <td>2020</td>\n",
|
956 |
+
" <td>3.159802</td>\n",
|
957 |
+
" <td>7.828757</td>\n",
|
958 |
+
" <td>0.717243</td>\n",
|
959 |
+
" <td>56.799999</td>\n",
|
960 |
+
" <td>0.643303</td>\n",
|
961 |
+
" <td>-0.008696</td>\n",
|
962 |
+
" <td>0.788523</td>\n",
|
963 |
+
" <td>0.702573</td>\n",
|
964 |
+
" <td>0.345736</td>\n",
|
965 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
966 |
+
" </tr>\n",
|
967 |
+
" <tr>\n",
|
968 |
+
" <th>174</th>\n",
|
969 |
+
" <td>Benin</td>\n",
|
970 |
+
" <td>2020</td>\n",
|
971 |
+
" <td>4.407746</td>\n",
|
972 |
+
" <td>8.102292</td>\n",
|
973 |
+
" <td>0.506636</td>\n",
|
974 |
+
" <td>55.099998</td>\n",
|
975 |
+
" <td>0.783115</td>\n",
|
976 |
+
" <td>-0.083489</td>\n",
|
977 |
+
" <td>0.531884</td>\n",
|
978 |
+
" <td>0.608585</td>\n",
|
979 |
+
" <td>0.304512</td>\n",
|
980 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
981 |
+
" </tr>\n",
|
982 |
+
" <tr>\n",
|
983 |
+
" <th>1835</th>\n",
|
984 |
+
" <td>United Kingdom</td>\n",
|
985 |
+
" <td>2020</td>\n",
|
986 |
+
" <td>6.798177</td>\n",
|
987 |
+
" <td>10.625811</td>\n",
|
988 |
+
" <td>0.929353</td>\n",
|
989 |
+
" <td>72.699997</td>\n",
|
990 |
+
" <td>0.884624</td>\n",
|
991 |
+
" <td>0.202508</td>\n",
|
992 |
+
" <td>0.490204</td>\n",
|
993 |
+
" <td>0.758164</td>\n",
|
994 |
+
" <td>0.224655</td>\n",
|
995 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
996 |
+
" </tr>\n",
|
997 |
+
" <tr>\n",
|
998 |
+
" <th>1394</th>\n",
|
999 |
+
" <td>Philippines</td>\n",
|
1000 |
+
" <td>2020</td>\n",
|
1001 |
+
" <td>5.079585</td>\n",
|
1002 |
+
" <td>9.061443</td>\n",
|
1003 |
+
" <td>0.781140</td>\n",
|
1004 |
+
" <td>62.099998</td>\n",
|
1005 |
+
" <td>0.932042</td>\n",
|
1006 |
+
" <td>-0.115543</td>\n",
|
1007 |
+
" <td>0.744284</td>\n",
|
1008 |
+
" <td>0.803562</td>\n",
|
1009 |
+
" <td>0.326889</td>\n",
|
1010 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
1011 |
+
" </tr>\n",
|
1012 |
+
" <tr>\n",
|
1013 |
+
" <th>785</th>\n",
|
1014 |
+
" <td>Iraq</td>\n",
|
1015 |
+
" <td>2020</td>\n",
|
1016 |
+
" <td>4.785165</td>\n",
|
1017 |
+
" <td>9.167186</td>\n",
|
1018 |
+
" <td>0.707847</td>\n",
|
1019 |
+
" <td>61.400002</td>\n",
|
1020 |
+
" <td>0.700215</td>\n",
|
1021 |
+
" <td>-0.020748</td>\n",
|
1022 |
+
" <td>0.849109</td>\n",
|
1023 |
+
" <td>0.644464</td>\n",
|
1024 |
+
" <td>0.531539</td>\n",
|
1025 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
1026 |
+
" </tr>\n",
|
1027 |
+
" </tbody>\n",
|
1028 |
+
"</table>\n",
|
1029 |
+
"</div>"
|
1030 |
+
],
|
1031 |
+
"text/plain": [
|
1032 |
+
" Country name year Life Ladder Log GDP per capita Social support \\\n",
|
1033 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
1034 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
1035 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
1036 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
1037 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
1038 |
+
"\n",
|
1039 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
1040 |
+
"1948 56.799999 0.643303 \n",
|
1041 |
+
"174 55.099998 0.783115 \n",
|
1042 |
+
"1835 72.699997 0.884624 \n",
|
1043 |
+
"1394 62.099998 0.932042 \n",
|
1044 |
+
"785 61.400002 0.700215 \n",
|
1045 |
+
"\n",
|
1046 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \\\n",
|
1047 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
1048 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
1049 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
1050 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
1051 |
+
"785 -0.020748 0.849109 0.644464 0.531539 \n",
|
1052 |
+
"\n",
|
1053 |
+
" Continent \n",
|
1054 |
+
"1948 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1055 |
+
"174 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1056 |
+
"1835 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1057 |
+
"1394 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1058 |
+
"785 <pandas.core.indexing._iLocIndexer object at 0... "
|
1059 |
+
]
|
1060 |
+
},
|
1061 |
+
"execution_count": 50,
|
1062 |
+
"metadata": {},
|
1063 |
+
"output_type": "execute_result"
|
1064 |
+
}
|
1065 |
+
],
|
1066 |
+
"source": [
|
1067 |
+
"df_dedup.head()"
|
1068 |
+
]
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"cell_type": "code",
|
1072 |
+
"execution_count": 74,
|
1073 |
+
"id": "b1fcd392-abfb-42a8-8485-f3fbd6a155d1",
|
1074 |
+
"metadata": {},
|
1075 |
+
"outputs": [],
|
1076 |
+
"source": [
|
1077 |
+
"df_cont = df_dedup.set_index('Country').join(df_csv.set_index('Country'), on='Country', how='left')"
|
1078 |
+
]
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"cell_type": "code",
|
1082 |
+
"execution_count": 77,
|
1083 |
+
"id": "55ec121c-534e-4e25-88e9-5ab8267fd66b",
|
1084 |
+
"metadata": {},
|
1085 |
+
"outputs": [],
|
1086 |
+
"source": [
|
1087 |
+
"df_cont = df_cont.reset_index()"
|
1088 |
+
]
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"cell_type": "code",
|
1092 |
+
"execution_count": 78,
|
1093 |
+
"id": "8ddaf798-772d-489d-b2fc-32d4cd76ae50",
|
1094 |
+
"metadata": {},
|
1095 |
+
"outputs": [
|
1096 |
+
{
|
1097 |
+
"data": {
|
1098 |
+
"text/plain": [
|
1099 |
+
"166"
|
1100 |
+
]
|
1101 |
+
},
|
1102 |
+
"execution_count": 78,
|
1103 |
+
"metadata": {},
|
1104 |
+
"output_type": "execute_result"
|
1105 |
+
}
|
1106 |
+
],
|
1107 |
+
"source": [
|
1108 |
+
"len(df_cont)"
|
1109 |
+
]
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"cell_type": "code",
|
1113 |
+
"execution_count": 79,
|
1114 |
+
"id": "7420265a-e079-443c-9be0-01becf73a836",
|
1115 |
+
"metadata": {},
|
1116 |
+
"outputs": [
|
1117 |
+
{
|
1118 |
+
"data": {
|
1119 |
+
"text/html": [
|
1120 |
+
"<div>\n",
|
1121 |
+
"<style scoped>\n",
|
1122 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1123 |
+
" vertical-align: middle;\n",
|
1124 |
+
" }\n",
|
1125 |
+
"\n",
|
1126 |
+
" .dataframe tbody tr th {\n",
|
1127 |
+
" vertical-align: top;\n",
|
1128 |
+
" }\n",
|
1129 |
+
"\n",
|
1130 |
+
" .dataframe thead th {\n",
|
1131 |
+
" text-align: right;\n",
|
1132 |
+
" }\n",
|
1133 |
+
"</style>\n",
|
1134 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1135 |
+
" <thead>\n",
|
1136 |
+
" <tr style=\"text-align: right;\">\n",
|
1137 |
+
" <th></th>\n",
|
1138 |
+
" <th>Country</th>\n",
|
1139 |
+
" <th>year</th>\n",
|
1140 |
+
" <th>Life Ladder</th>\n",
|
1141 |
+
" <th>Log GDP per capita</th>\n",
|
1142 |
+
" <th>Social support</th>\n",
|
1143 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
1144 |
+
" <th>Freedom to make life choices</th>\n",
|
1145 |
+
" <th>Generosity</th>\n",
|
1146 |
+
" <th>Perceptions of corruption</th>\n",
|
1147 |
+
" <th>Positive affect</th>\n",
|
1148 |
+
" <th>Negative affect</th>\n",
|
1149 |
+
" <th>Continent</th>\n",
|
1150 |
+
" </tr>\n",
|
1151 |
+
" </thead>\n",
|
1152 |
+
" <tbody>\n",
|
1153 |
+
" <tr>\n",
|
1154 |
+
" <th>0</th>\n",
|
1155 |
+
" <td>Zimbabwe</td>\n",
|
1156 |
+
" <td>2020</td>\n",
|
1157 |
+
" <td>3.159802</td>\n",
|
1158 |
+
" <td>7.828757</td>\n",
|
1159 |
+
" <td>0.717243</td>\n",
|
1160 |
+
" <td>56.799999</td>\n",
|
1161 |
+
" <td>0.643303</td>\n",
|
1162 |
+
" <td>-0.008696</td>\n",
|
1163 |
+
" <td>0.788523</td>\n",
|
1164 |
+
" <td>0.702573</td>\n",
|
1165 |
+
" <td>0.345736</td>\n",
|
1166 |
+
" <td>Africa</td>\n",
|
1167 |
+
" </tr>\n",
|
1168 |
+
" <tr>\n",
|
1169 |
+
" <th>1</th>\n",
|
1170 |
+
" <td>Benin</td>\n",
|
1171 |
+
" <td>2020</td>\n",
|
1172 |
+
" <td>4.407746</td>\n",
|
1173 |
+
" <td>8.102292</td>\n",
|
1174 |
+
" <td>0.506636</td>\n",
|
1175 |
+
" <td>55.099998</td>\n",
|
1176 |
+
" <td>0.783115</td>\n",
|
1177 |
+
" <td>-0.083489</td>\n",
|
1178 |
+
" <td>0.531884</td>\n",
|
1179 |
+
" <td>0.608585</td>\n",
|
1180 |
+
" <td>0.304512</td>\n",
|
1181 |
+
" <td>Africa</td>\n",
|
1182 |
+
" </tr>\n",
|
1183 |
+
" <tr>\n",
|
1184 |
+
" <th>2</th>\n",
|
1185 |
+
" <td>United Kingdom</td>\n",
|
1186 |
+
" <td>2020</td>\n",
|
1187 |
+
" <td>6.798177</td>\n",
|
1188 |
+
" <td>10.625811</td>\n",
|
1189 |
+
" <td>0.929353</td>\n",
|
1190 |
+
" <td>72.699997</td>\n",
|
1191 |
+
" <td>0.884624</td>\n",
|
1192 |
+
" <td>0.202508</td>\n",
|
1193 |
+
" <td>0.490204</td>\n",
|
1194 |
+
" <td>0.758164</td>\n",
|
1195 |
+
" <td>0.224655</td>\n",
|
1196 |
+
" <td>Europe</td>\n",
|
1197 |
+
" </tr>\n",
|
1198 |
+
" <tr>\n",
|
1199 |
+
" <th>3</th>\n",
|
1200 |
+
" <td>Philippines</td>\n",
|
1201 |
+
" <td>2020</td>\n",
|
1202 |
+
" <td>5.079585</td>\n",
|
1203 |
+
" <td>9.061443</td>\n",
|
1204 |
+
" <td>0.781140</td>\n",
|
1205 |
+
" <td>62.099998</td>\n",
|
1206 |
+
" <td>0.932042</td>\n",
|
1207 |
+
" <td>-0.115543</td>\n",
|
1208 |
+
" <td>0.744284</td>\n",
|
1209 |
+
" <td>0.803562</td>\n",
|
1210 |
+
" <td>0.326889</td>\n",
|
1211 |
+
" <td>Asia</td>\n",
|
1212 |
+
" </tr>\n",
|
1213 |
+
" <tr>\n",
|
1214 |
+
" <th>4</th>\n",
|
1215 |
+
" <td>Iraq</td>\n",
|
1216 |
+
" <td>2020</td>\n",
|
1217 |
+
" <td>4.785165</td>\n",
|
1218 |
+
" <td>9.167186</td>\n",
|
1219 |
+
" <td>0.707847</td>\n",
|
1220 |
+
" <td>61.400002</td>\n",
|
1221 |
+
" <td>0.700215</td>\n",
|
1222 |
+
" <td>-0.020748</td>\n",
|
1223 |
+
" <td>0.849109</td>\n",
|
1224 |
+
" <td>0.644464</td>\n",
|
1225 |
+
" <td>0.531539</td>\n",
|
1226 |
+
" <td>Asia</td>\n",
|
1227 |
+
" </tr>\n",
|
1228 |
+
" </tbody>\n",
|
1229 |
+
"</table>\n",
|
1230 |
+
"</div>"
|
1231 |
+
],
|
1232 |
+
"text/plain": [
|
1233 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
1234 |
+
"0 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
1235 |
+
"1 Benin 2020 4.407746 8.102292 0.506636 \n",
|
1236 |
+
"2 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
1237 |
+
"3 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
1238 |
+
"4 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
1239 |
+
"\n",
|
1240 |
+
" Healthy life expectancy at birth Freedom to make life choices Generosity \\\n",
|
1241 |
+
"0 56.799999 0.643303 -0.008696 \n",
|
1242 |
+
"1 55.099998 0.783115 -0.083489 \n",
|
1243 |
+
"2 72.699997 0.884624 0.202508 \n",
|
1244 |
+
"3 62.099998 0.932042 -0.115543 \n",
|
1245 |
+
"4 61.400002 0.700215 -0.020748 \n",
|
1246 |
+
"\n",
|
1247 |
+
" Perceptions of corruption Positive affect Negative affect Continent \n",
|
1248 |
+
"0 0.788523 0.702573 0.345736 Africa \n",
|
1249 |
+
"1 0.531884 0.608585 0.304512 Africa \n",
|
1250 |
+
"2 0.490204 0.758164 0.224655 Europe \n",
|
1251 |
+
"3 0.744284 0.803562 0.326889 Asia \n",
|
1252 |
+
"4 0.849109 0.644464 0.531539 Asia "
|
1253 |
+
]
|
1254 |
+
},
|
1255 |
+
"execution_count": 79,
|
1256 |
+
"metadata": {},
|
1257 |
+
"output_type": "execute_result"
|
1258 |
+
}
|
1259 |
+
],
|
1260 |
+
"source": [
|
1261 |
+
"df_cont.head()"
|
1262 |
+
]
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"cell_type": "code",
|
1266 |
+
"execution_count": 81,
|
1267 |
+
"id": "fb26fc2f-f591-4e66-9357-0928c2c46e89",
|
1268 |
+
"metadata": {},
|
1269 |
+
"outputs": [],
|
1270 |
+
"source": [
|
1271 |
+
"# I updated the name of the output so that I don't accidentally overwrite the manual work I did at the end to add in the last few outliers.\n",
|
1272 |
+
"#df_cont.to_csv(\"Assets/Countries/base-combined-countries.csv\")"
|
1273 |
+
]
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"cell_type": "code",
|
1277 |
+
"execution_count": 83,
|
1278 |
+
"id": "445a79b2-0023-4812-b606-1ff9cb7720e7",
|
1279 |
+
"metadata": {},
|
1280 |
+
"outputs": [],
|
1281 |
+
"source": [
|
1282 |
+
"df3 = df_csv.set_index('Country').join(df_dedup.set_index('Country'), on='Country', how='left')"
|
1283 |
+
]
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"cell_type": "code",
|
1287 |
+
"execution_count": 87,
|
1288 |
+
"id": "59c3d6bb-11ea-4b4f-9a9e-d9b58561e8f2",
|
1289 |
+
"metadata": {},
|
1290 |
+
"outputs": [],
|
1291 |
+
"source": [
|
1292 |
+
"df3 = df3[df3.year.isnull()]"
|
1293 |
+
]
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"cell_type": "code",
|
1297 |
+
"execution_count": 88,
|
1298 |
+
"id": "3b76dce1-a02f-4b09-bc44-b0e28271bc56",
|
1299 |
+
"metadata": {},
|
1300 |
+
"outputs": [
|
1301 |
+
{
|
1302 |
+
"data": {
|
1303 |
+
"text/html": [
|
1304 |
+
"<div>\n",
|
1305 |
+
"<style scoped>\n",
|
1306 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1307 |
+
" vertical-align: middle;\n",
|
1308 |
+
" }\n",
|
1309 |
+
"\n",
|
1310 |
+
" .dataframe tbody tr th {\n",
|
1311 |
+
" vertical-align: top;\n",
|
1312 |
+
" }\n",
|
1313 |
+
"\n",
|
1314 |
+
" .dataframe thead th {\n",
|
1315 |
+
" text-align: right;\n",
|
1316 |
+
" }\n",
|
1317 |
+
"</style>\n",
|
1318 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1319 |
+
" <thead>\n",
|
1320 |
+
" <tr style=\"text-align: right;\">\n",
|
1321 |
+
" <th></th>\n",
|
1322 |
+
" <th>Continent</th>\n",
|
1323 |
+
" <th>year</th>\n",
|
1324 |
+
" <th>Life Ladder</th>\n",
|
1325 |
+
" <th>Log GDP per capita</th>\n",
|
1326 |
+
" <th>Social support</th>\n",
|
1327 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
1328 |
+
" <th>Freedom to make life choices</th>\n",
|
1329 |
+
" <th>Generosity</th>\n",
|
1330 |
+
" <th>Perceptions of corruption</th>\n",
|
1331 |
+
" <th>Positive affect</th>\n",
|
1332 |
+
" <th>Negative affect</th>\n",
|
1333 |
+
" </tr>\n",
|
1334 |
+
" <tr>\n",
|
1335 |
+
" <th>Country</th>\n",
|
1336 |
+
" <th></th>\n",
|
1337 |
+
" <th></th>\n",
|
1338 |
+
" <th></th>\n",
|
1339 |
+
" <th></th>\n",
|
1340 |
+
" <th></th>\n",
|
1341 |
+
" <th></th>\n",
|
1342 |
+
" <th></th>\n",
|
1343 |
+
" <th></th>\n",
|
1344 |
+
" <th></th>\n",
|
1345 |
+
" <th></th>\n",
|
1346 |
+
" <th></th>\n",
|
1347 |
+
" </tr>\n",
|
1348 |
+
" </thead>\n",
|
1349 |
+
" <tbody>\n",
|
1350 |
+
" <tr>\n",
|
1351 |
+
" <th>Burkina</th>\n",
|
1352 |
+
" <td>Africa</td>\n",
|
1353 |
+
" <td>NaN</td>\n",
|
1354 |
+
" <td>NaN</td>\n",
|
1355 |
+
" <td>NaN</td>\n",
|
1356 |
+
" <td>NaN</td>\n",
|
1357 |
+
" <td>NaN</td>\n",
|
1358 |
+
" <td>NaN</td>\n",
|
1359 |
+
" <td>NaN</td>\n",
|
1360 |
+
" <td>NaN</td>\n",
|
1361 |
+
" <td>NaN</td>\n",
|
1362 |
+
" <td>NaN</td>\n",
|
1363 |
+
" </tr>\n",
|
1364 |
+
" <tr>\n",
|
1365 |
+
" <th>Cape Verde</th>\n",
|
1366 |
+
" <td>Africa</td>\n",
|
1367 |
+
" <td>NaN</td>\n",
|
1368 |
+
" <td>NaN</td>\n",
|
1369 |
+
" <td>NaN</td>\n",
|
1370 |
+
" <td>NaN</td>\n",
|
1371 |
+
" <td>NaN</td>\n",
|
1372 |
+
" <td>NaN</td>\n",
|
1373 |
+
" <td>NaN</td>\n",
|
1374 |
+
" <td>NaN</td>\n",
|
1375 |
+
" <td>NaN</td>\n",
|
1376 |
+
" <td>NaN</td>\n",
|
1377 |
+
" </tr>\n",
|
1378 |
+
" <tr>\n",
|
1379 |
+
" <th>Congo</th>\n",
|
1380 |
+
" <td>Africa</td>\n",
|
1381 |
+
" <td>NaN</td>\n",
|
1382 |
+
" <td>NaN</td>\n",
|
1383 |
+
" <td>NaN</td>\n",
|
1384 |
+
" <td>NaN</td>\n",
|
1385 |
+
" <td>NaN</td>\n",
|
1386 |
+
" <td>NaN</td>\n",
|
1387 |
+
" <td>NaN</td>\n",
|
1388 |
+
" <td>NaN</td>\n",
|
1389 |
+
" <td>NaN</td>\n",
|
1390 |
+
" <td>NaN</td>\n",
|
1391 |
+
" </tr>\n",
|
1392 |
+
" <tr>\n",
|
1393 |
+
" <th>Congo, Democratic Republic of</th>\n",
|
1394 |
+
" <td>Africa</td>\n",
|
1395 |
+
" <td>NaN</td>\n",
|
1396 |
+
" <td>NaN</td>\n",
|
1397 |
+
" <td>NaN</td>\n",
|
1398 |
+
" <td>NaN</td>\n",
|
1399 |
+
" <td>NaN</td>\n",
|
1400 |
+
" <td>NaN</td>\n",
|
1401 |
+
" <td>NaN</td>\n",
|
1402 |
+
" <td>NaN</td>\n",
|
1403 |
+
" <td>NaN</td>\n",
|
1404 |
+
" <td>NaN</td>\n",
|
1405 |
+
" </tr>\n",
|
1406 |
+
" <tr>\n",
|
1407 |
+
" <th>Equatorial Guinea</th>\n",
|
1408 |
+
" <td>Africa</td>\n",
|
1409 |
+
" <td>NaN</td>\n",
|
1410 |
+
" <td>NaN</td>\n",
|
1411 |
+
" <td>NaN</td>\n",
|
1412 |
+
" <td>NaN</td>\n",
|
1413 |
+
" <td>NaN</td>\n",
|
1414 |
+
" <td>NaN</td>\n",
|
1415 |
+
" <td>NaN</td>\n",
|
1416 |
+
" <td>NaN</td>\n",
|
1417 |
+
" <td>NaN</td>\n",
|
1418 |
+
" <td>NaN</td>\n",
|
1419 |
+
" </tr>\n",
|
1420 |
+
" <tr>\n",
|
1421 |
+
" <th>Eritrea</th>\n",
|
1422 |
+
" <td>Africa</td>\n",
|
1423 |
+
" <td>NaN</td>\n",
|
1424 |
+
" <td>NaN</td>\n",
|
1425 |
+
" <td>NaN</td>\n",
|
1426 |
+
" <td>NaN</td>\n",
|
1427 |
+
" <td>NaN</td>\n",
|
1428 |
+
" <td>NaN</td>\n",
|
1429 |
+
" <td>NaN</td>\n",
|
1430 |
+
" <td>NaN</td>\n",
|
1431 |
+
" <td>NaN</td>\n",
|
1432 |
+
" <td>NaN</td>\n",
|
1433 |
+
" </tr>\n",
|
1434 |
+
" <tr>\n",
|
1435 |
+
" <th>Guinea-Bissau</th>\n",
|
1436 |
+
" <td>Africa</td>\n",
|
1437 |
+
" <td>NaN</td>\n",
|
1438 |
+
" <td>NaN</td>\n",
|
1439 |
+
" <td>NaN</td>\n",
|
1440 |
+
" <td>NaN</td>\n",
|
1441 |
+
" <td>NaN</td>\n",
|
1442 |
+
" <td>NaN</td>\n",
|
1443 |
+
" <td>NaN</td>\n",
|
1444 |
+
" <td>NaN</td>\n",
|
1445 |
+
" <td>NaN</td>\n",
|
1446 |
+
" <td>NaN</td>\n",
|
1447 |
+
" </tr>\n",
|
1448 |
+
" <tr>\n",
|
1449 |
+
" <th>Sao Tome and Principe</th>\n",
|
1450 |
+
" <td>Africa</td>\n",
|
1451 |
+
" <td>NaN</td>\n",
|
1452 |
+
" <td>NaN</td>\n",
|
1453 |
+
" <td>NaN</td>\n",
|
1454 |
+
" <td>NaN</td>\n",
|
1455 |
+
" <td>NaN</td>\n",
|
1456 |
+
" <td>NaN</td>\n",
|
1457 |
+
" <td>NaN</td>\n",
|
1458 |
+
" <td>NaN</td>\n",
|
1459 |
+
" <td>NaN</td>\n",
|
1460 |
+
" <td>NaN</td>\n",
|
1461 |
+
" </tr>\n",
|
1462 |
+
" <tr>\n",
|
1463 |
+
" <th>Seychelles</th>\n",
|
1464 |
+
" <td>Africa</td>\n",
|
1465 |
+
" <td>NaN</td>\n",
|
1466 |
+
" <td>NaN</td>\n",
|
1467 |
+
" <td>NaN</td>\n",
|
1468 |
+
" <td>NaN</td>\n",
|
1469 |
+
" <td>NaN</td>\n",
|
1470 |
+
" <td>NaN</td>\n",
|
1471 |
+
" <td>NaN</td>\n",
|
1472 |
+
" <td>NaN</td>\n",
|
1473 |
+
" <td>NaN</td>\n",
|
1474 |
+
" <td>NaN</td>\n",
|
1475 |
+
" </tr>\n",
|
1476 |
+
" <tr>\n",
|
1477 |
+
" <th>Brunei</th>\n",
|
1478 |
+
" <td>Asia</td>\n",
|
1479 |
+
" <td>NaN</td>\n",
|
1480 |
+
" <td>NaN</td>\n",
|
1481 |
+
" <td>NaN</td>\n",
|
1482 |
+
" <td>NaN</td>\n",
|
1483 |
+
" <td>NaN</td>\n",
|
1484 |
+
" <td>NaN</td>\n",
|
1485 |
+
" <td>NaN</td>\n",
|
1486 |
+
" <td>NaN</td>\n",
|
1487 |
+
" <td>NaN</td>\n",
|
1488 |
+
" <td>NaN</td>\n",
|
1489 |
+
" </tr>\n",
|
1490 |
+
" <tr>\n",
|
1491 |
+
" <th>Burma (Myanmar)</th>\n",
|
1492 |
+
" <td>Asia</td>\n",
|
1493 |
+
" <td>NaN</td>\n",
|
1494 |
+
" <td>NaN</td>\n",
|
1495 |
+
" <td>NaN</td>\n",
|
1496 |
+
" <td>NaN</td>\n",
|
1497 |
+
" <td>NaN</td>\n",
|
1498 |
+
" <td>NaN</td>\n",
|
1499 |
+
" <td>NaN</td>\n",
|
1500 |
+
" <td>NaN</td>\n",
|
1501 |
+
" <td>NaN</td>\n",
|
1502 |
+
" <td>NaN</td>\n",
|
1503 |
+
" </tr>\n",
|
1504 |
+
" <tr>\n",
|
1505 |
+
" <th>East Timor</th>\n",
|
1506 |
+
" <td>Asia</td>\n",
|
1507 |
+
" <td>NaN</td>\n",
|
1508 |
+
" <td>NaN</td>\n",
|
1509 |
+
" <td>NaN</td>\n",
|
1510 |
+
" <td>NaN</td>\n",
|
1511 |
+
" <td>NaN</td>\n",
|
1512 |
+
" <td>NaN</td>\n",
|
1513 |
+
" <td>NaN</td>\n",
|
1514 |
+
" <td>NaN</td>\n",
|
1515 |
+
" <td>NaN</td>\n",
|
1516 |
+
" <td>NaN</td>\n",
|
1517 |
+
" </tr>\n",
|
1518 |
+
" <tr>\n",
|
1519 |
+
" <th>Korea, North</th>\n",
|
1520 |
+
" <td>Asia</td>\n",
|
1521 |
+
" <td>NaN</td>\n",
|
1522 |
+
" <td>NaN</td>\n",
|
1523 |
+
" <td>NaN</td>\n",
|
1524 |
+
" <td>NaN</td>\n",
|
1525 |
+
" <td>NaN</td>\n",
|
1526 |
+
" <td>NaN</td>\n",
|
1527 |
+
" <td>NaN</td>\n",
|
1528 |
+
" <td>NaN</td>\n",
|
1529 |
+
" <td>NaN</td>\n",
|
1530 |
+
" <td>NaN</td>\n",
|
1531 |
+
" </tr>\n",
|
1532 |
+
" <tr>\n",
|
1533 |
+
" <th>Korea, South</th>\n",
|
1534 |
+
" <td>Asia</td>\n",
|
1535 |
+
" <td>NaN</td>\n",
|
1536 |
+
" <td>NaN</td>\n",
|
1537 |
+
" <td>NaN</td>\n",
|
1538 |
+
" <td>NaN</td>\n",
|
1539 |
+
" <td>NaN</td>\n",
|
1540 |
+
" <td>NaN</td>\n",
|
1541 |
+
" <td>NaN</td>\n",
|
1542 |
+
" <td>NaN</td>\n",
|
1543 |
+
" <td>NaN</td>\n",
|
1544 |
+
" <td>NaN</td>\n",
|
1545 |
+
" </tr>\n",
|
1546 |
+
" <tr>\n",
|
1547 |
+
" <th>Russian Federation</th>\n",
|
1548 |
+
" <td>Asia</td>\n",
|
1549 |
+
" <td>NaN</td>\n",
|
1550 |
+
" <td>NaN</td>\n",
|
1551 |
+
" <td>NaN</td>\n",
|
1552 |
+
" <td>NaN</td>\n",
|
1553 |
+
" <td>NaN</td>\n",
|
1554 |
+
" <td>NaN</td>\n",
|
1555 |
+
" <td>NaN</td>\n",
|
1556 |
+
" <td>NaN</td>\n",
|
1557 |
+
" <td>NaN</td>\n",
|
1558 |
+
" <td>NaN</td>\n",
|
1559 |
+
" </tr>\n",
|
1560 |
+
" <tr>\n",
|
1561 |
+
" <th>Andorra</th>\n",
|
1562 |
+
" <td>Europe</td>\n",
|
1563 |
+
" <td>NaN</td>\n",
|
1564 |
+
" <td>NaN</td>\n",
|
1565 |
+
" <td>NaN</td>\n",
|
1566 |
+
" <td>NaN</td>\n",
|
1567 |
+
" <td>NaN</td>\n",
|
1568 |
+
" <td>NaN</td>\n",
|
1569 |
+
" <td>NaN</td>\n",
|
1570 |
+
" <td>NaN</td>\n",
|
1571 |
+
" <td>NaN</td>\n",
|
1572 |
+
" <td>NaN</td>\n",
|
1573 |
+
" </tr>\n",
|
1574 |
+
" <tr>\n",
|
1575 |
+
" <th>CZ</th>\n",
|
1576 |
+
" <td>Europe</td>\n",
|
1577 |
+
" <td>NaN</td>\n",
|
1578 |
+
" <td>NaN</td>\n",
|
1579 |
+
" <td>NaN</td>\n",
|
1580 |
+
" <td>NaN</td>\n",
|
1581 |
+
" <td>NaN</td>\n",
|
1582 |
+
" <td>NaN</td>\n",
|
1583 |
+
" <td>NaN</td>\n",
|
1584 |
+
" <td>NaN</td>\n",
|
1585 |
+
" <td>NaN</td>\n",
|
1586 |
+
" <td>NaN</td>\n",
|
1587 |
+
" </tr>\n",
|
1588 |
+
" <tr>\n",
|
1589 |
+
" <th>Liechtenstein</th>\n",
|
1590 |
+
" <td>Europe</td>\n",
|
1591 |
+
" <td>NaN</td>\n",
|
1592 |
+
" <td>NaN</td>\n",
|
1593 |
+
" <td>NaN</td>\n",
|
1594 |
+
" <td>NaN</td>\n",
|
1595 |
+
" <td>NaN</td>\n",
|
1596 |
+
" <td>NaN</td>\n",
|
1597 |
+
" <td>NaN</td>\n",
|
1598 |
+
" <td>NaN</td>\n",
|
1599 |
+
" <td>NaN</td>\n",
|
1600 |
+
" <td>NaN</td>\n",
|
1601 |
+
" </tr>\n",
|
1602 |
+
" <tr>\n",
|
1603 |
+
" <th>Macedonia</th>\n",
|
1604 |
+
" <td>Europe</td>\n",
|
1605 |
+
" <td>NaN</td>\n",
|
1606 |
+
" <td>NaN</td>\n",
|
1607 |
+
" <td>NaN</td>\n",
|
1608 |
+
" <td>NaN</td>\n",
|
1609 |
+
" <td>NaN</td>\n",
|
1610 |
+
" <td>NaN</td>\n",
|
1611 |
+
" <td>NaN</td>\n",
|
1612 |
+
" <td>NaN</td>\n",
|
1613 |
+
" <td>NaN</td>\n",
|
1614 |
+
" <td>NaN</td>\n",
|
1615 |
+
" </tr>\n",
|
1616 |
+
" <tr>\n",
|
1617 |
+
" <th>Monaco</th>\n",
|
1618 |
+
" <td>Europe</td>\n",
|
1619 |
+
" <td>NaN</td>\n",
|
1620 |
+
" <td>NaN</td>\n",
|
1621 |
+
" <td>NaN</td>\n",
|
1622 |
+
" <td>NaN</td>\n",
|
1623 |
+
" <td>NaN</td>\n",
|
1624 |
+
" <td>NaN</td>\n",
|
1625 |
+
" <td>NaN</td>\n",
|
1626 |
+
" <td>NaN</td>\n",
|
1627 |
+
" <td>NaN</td>\n",
|
1628 |
+
" <td>NaN</td>\n",
|
1629 |
+
" </tr>\n",
|
1630 |
+
" <tr>\n",
|
1631 |
+
" <th>San Marino</th>\n",
|
1632 |
+
" <td>Europe</td>\n",
|
1633 |
+
" <td>NaN</td>\n",
|
1634 |
+
" <td>NaN</td>\n",
|
1635 |
+
" <td>NaN</td>\n",
|
1636 |
+
" <td>NaN</td>\n",
|
1637 |
+
" <td>NaN</td>\n",
|
1638 |
+
" <td>NaN</td>\n",
|
1639 |
+
" <td>NaN</td>\n",
|
1640 |
+
" <td>NaN</td>\n",
|
1641 |
+
" <td>NaN</td>\n",
|
1642 |
+
" <td>NaN</td>\n",
|
1643 |
+
" </tr>\n",
|
1644 |
+
" <tr>\n",
|
1645 |
+
" <th>Vatican City</th>\n",
|
1646 |
+
" <td>Europe</td>\n",
|
1647 |
+
" <td>NaN</td>\n",
|
1648 |
+
" <td>NaN</td>\n",
|
1649 |
+
" <td>NaN</td>\n",
|
1650 |
+
" <td>NaN</td>\n",
|
1651 |
+
" <td>NaN</td>\n",
|
1652 |
+
" <td>NaN</td>\n",
|
1653 |
+
" <td>NaN</td>\n",
|
1654 |
+
" <td>NaN</td>\n",
|
1655 |
+
" <td>NaN</td>\n",
|
1656 |
+
" <td>NaN</td>\n",
|
1657 |
+
" </tr>\n",
|
1658 |
+
" <tr>\n",
|
1659 |
+
" <th>Antigua and Barbuda</th>\n",
|
1660 |
+
" <td>North America</td>\n",
|
1661 |
+
" <td>NaN</td>\n",
|
1662 |
+
" <td>NaN</td>\n",
|
1663 |
+
" <td>NaN</td>\n",
|
1664 |
+
" <td>NaN</td>\n",
|
1665 |
+
" <td>NaN</td>\n",
|
1666 |
+
" <td>NaN</td>\n",
|
1667 |
+
" <td>NaN</td>\n",
|
1668 |
+
" <td>NaN</td>\n",
|
1669 |
+
" <td>NaN</td>\n",
|
1670 |
+
" <td>NaN</td>\n",
|
1671 |
+
" </tr>\n",
|
1672 |
+
" <tr>\n",
|
1673 |
+
" <th>Bahamas</th>\n",
|
1674 |
+
" <td>North America</td>\n",
|
1675 |
+
" <td>NaN</td>\n",
|
1676 |
+
" <td>NaN</td>\n",
|
1677 |
+
" <td>NaN</td>\n",
|
1678 |
+
" <td>NaN</td>\n",
|
1679 |
+
" <td>NaN</td>\n",
|
1680 |
+
" <td>NaN</td>\n",
|
1681 |
+
" <td>NaN</td>\n",
|
1682 |
+
" <td>NaN</td>\n",
|
1683 |
+
" <td>NaN</td>\n",
|
1684 |
+
" <td>NaN</td>\n",
|
1685 |
+
" </tr>\n",
|
1686 |
+
" <tr>\n",
|
1687 |
+
" <th>Barbados</th>\n",
|
1688 |
+
" <td>North America</td>\n",
|
1689 |
+
" <td>NaN</td>\n",
|
1690 |
+
" <td>NaN</td>\n",
|
1691 |
+
" <td>NaN</td>\n",
|
1692 |
+
" <td>NaN</td>\n",
|
1693 |
+
" <td>NaN</td>\n",
|
1694 |
+
" <td>NaN</td>\n",
|
1695 |
+
" <td>NaN</td>\n",
|
1696 |
+
" <td>NaN</td>\n",
|
1697 |
+
" <td>NaN</td>\n",
|
1698 |
+
" <td>NaN</td>\n",
|
1699 |
+
" </tr>\n",
|
1700 |
+
" <tr>\n",
|
1701 |
+
" <th>Dominica</th>\n",
|
1702 |
+
" <td>North America</td>\n",
|
1703 |
+
" <td>NaN</td>\n",
|
1704 |
+
" <td>NaN</td>\n",
|
1705 |
+
" <td>NaN</td>\n",
|
1706 |
+
" <td>NaN</td>\n",
|
1707 |
+
" <td>NaN</td>\n",
|
1708 |
+
" <td>NaN</td>\n",
|
1709 |
+
" <td>NaN</td>\n",
|
1710 |
+
" <td>NaN</td>\n",
|
1711 |
+
" <td>NaN</td>\n",
|
1712 |
+
" <td>NaN</td>\n",
|
1713 |
+
" </tr>\n",
|
1714 |
+
" <tr>\n",
|
1715 |
+
" <th>Grenada</th>\n",
|
1716 |
+
" <td>North America</td>\n",
|
1717 |
+
" <td>NaN</td>\n",
|
1718 |
+
" <td>NaN</td>\n",
|
1719 |
+
" <td>NaN</td>\n",
|
1720 |
+
" <td>NaN</td>\n",
|
1721 |
+
" <td>NaN</td>\n",
|
1722 |
+
" <td>NaN</td>\n",
|
1723 |
+
" <td>NaN</td>\n",
|
1724 |
+
" <td>NaN</td>\n",
|
1725 |
+
" <td>NaN</td>\n",
|
1726 |
+
" <td>NaN</td>\n",
|
1727 |
+
" </tr>\n",
|
1728 |
+
" <tr>\n",
|
1729 |
+
" <th>Saint Kitts and Nevis</th>\n",
|
1730 |
+
" <td>North America</td>\n",
|
1731 |
+
" <td>NaN</td>\n",
|
1732 |
+
" <td>NaN</td>\n",
|
1733 |
+
" <td>NaN</td>\n",
|
1734 |
+
" <td>NaN</td>\n",
|
1735 |
+
" <td>NaN</td>\n",
|
1736 |
+
" <td>NaN</td>\n",
|
1737 |
+
" <td>NaN</td>\n",
|
1738 |
+
" <td>NaN</td>\n",
|
1739 |
+
" <td>NaN</td>\n",
|
1740 |
+
" <td>NaN</td>\n",
|
1741 |
+
" </tr>\n",
|
1742 |
+
" <tr>\n",
|
1743 |
+
" <th>Saint Lucia</th>\n",
|
1744 |
+
" <td>North America</td>\n",
|
1745 |
+
" <td>NaN</td>\n",
|
1746 |
+
" <td>NaN</td>\n",
|
1747 |
+
" <td>NaN</td>\n",
|
1748 |
+
" <td>NaN</td>\n",
|
1749 |
+
" <td>NaN</td>\n",
|
1750 |
+
" <td>NaN</td>\n",
|
1751 |
+
" <td>NaN</td>\n",
|
1752 |
+
" <td>NaN</td>\n",
|
1753 |
+
" <td>NaN</td>\n",
|
1754 |
+
" <td>NaN</td>\n",
|
1755 |
+
" </tr>\n",
|
1756 |
+
" <tr>\n",
|
1757 |
+
" <th>Saint Vincent and the Grenadines</th>\n",
|
1758 |
+
" <td>North America</td>\n",
|
1759 |
+
" <td>NaN</td>\n",
|
1760 |
+
" <td>NaN</td>\n",
|
1761 |
+
" <td>NaN</td>\n",
|
1762 |
+
" <td>NaN</td>\n",
|
1763 |
+
" <td>NaN</td>\n",
|
1764 |
+
" <td>NaN</td>\n",
|
1765 |
+
" <td>NaN</td>\n",
|
1766 |
+
" <td>NaN</td>\n",
|
1767 |
+
" <td>NaN</td>\n",
|
1768 |
+
" <td>NaN</td>\n",
|
1769 |
+
" </tr>\n",
|
1770 |
+
" <tr>\n",
|
1771 |
+
" <th>US</th>\n",
|
1772 |
+
" <td>North America</td>\n",
|
1773 |
+
" <td>NaN</td>\n",
|
1774 |
+
" <td>NaN</td>\n",
|
1775 |
+
" <td>NaN</td>\n",
|
1776 |
+
" <td>NaN</td>\n",
|
1777 |
+
" <td>NaN</td>\n",
|
1778 |
+
" <td>NaN</td>\n",
|
1779 |
+
" <td>NaN</td>\n",
|
1780 |
+
" <td>NaN</td>\n",
|
1781 |
+
" <td>NaN</td>\n",
|
1782 |
+
" <td>NaN</td>\n",
|
1783 |
+
" </tr>\n",
|
1784 |
+
" <tr>\n",
|
1785 |
+
" <th>Fiji</th>\n",
|
1786 |
+
" <td>Oceania</td>\n",
|
1787 |
+
" <td>NaN</td>\n",
|
1788 |
+
" <td>NaN</td>\n",
|
1789 |
+
" <td>NaN</td>\n",
|
1790 |
+
" <td>NaN</td>\n",
|
1791 |
+
" <td>NaN</td>\n",
|
1792 |
+
" <td>NaN</td>\n",
|
1793 |
+
" <td>NaN</td>\n",
|
1794 |
+
" <td>NaN</td>\n",
|
1795 |
+
" <td>NaN</td>\n",
|
1796 |
+
" <td>NaN</td>\n",
|
1797 |
+
" </tr>\n",
|
1798 |
+
" <tr>\n",
|
1799 |
+
" <th>Kiribati</th>\n",
|
1800 |
+
" <td>Oceania</td>\n",
|
1801 |
+
" <td>NaN</td>\n",
|
1802 |
+
" <td>NaN</td>\n",
|
1803 |
+
" <td>NaN</td>\n",
|
1804 |
+
" <td>NaN</td>\n",
|
1805 |
+
" <td>NaN</td>\n",
|
1806 |
+
" <td>NaN</td>\n",
|
1807 |
+
" <td>NaN</td>\n",
|
1808 |
+
" <td>NaN</td>\n",
|
1809 |
+
" <td>NaN</td>\n",
|
1810 |
+
" <td>NaN</td>\n",
|
1811 |
+
" </tr>\n",
|
1812 |
+
" <tr>\n",
|
1813 |
+
" <th>Marshall Islands</th>\n",
|
1814 |
+
" <td>Oceania</td>\n",
|
1815 |
+
" <td>NaN</td>\n",
|
1816 |
+
" <td>NaN</td>\n",
|
1817 |
+
" <td>NaN</td>\n",
|
1818 |
+
" <td>NaN</td>\n",
|
1819 |
+
" <td>NaN</td>\n",
|
1820 |
+
" <td>NaN</td>\n",
|
1821 |
+
" <td>NaN</td>\n",
|
1822 |
+
" <td>NaN</td>\n",
|
1823 |
+
" <td>NaN</td>\n",
|
1824 |
+
" <td>NaN</td>\n",
|
1825 |
+
" </tr>\n",
|
1826 |
+
" <tr>\n",
|
1827 |
+
" <th>Micronesia</th>\n",
|
1828 |
+
" <td>Oceania</td>\n",
|
1829 |
+
" <td>NaN</td>\n",
|
1830 |
+
" <td>NaN</td>\n",
|
1831 |
+
" <td>NaN</td>\n",
|
1832 |
+
" <td>NaN</td>\n",
|
1833 |
+
" <td>NaN</td>\n",
|
1834 |
+
" <td>NaN</td>\n",
|
1835 |
+
" <td>NaN</td>\n",
|
1836 |
+
" <td>NaN</td>\n",
|
1837 |
+
" <td>NaN</td>\n",
|
1838 |
+
" <td>NaN</td>\n",
|
1839 |
+
" </tr>\n",
|
1840 |
+
" <tr>\n",
|
1841 |
+
" <th>Nauru</th>\n",
|
1842 |
+
" <td>Oceania</td>\n",
|
1843 |
+
" <td>NaN</td>\n",
|
1844 |
+
" <td>NaN</td>\n",
|
1845 |
+
" <td>NaN</td>\n",
|
1846 |
+
" <td>NaN</td>\n",
|
1847 |
+
" <td>NaN</td>\n",
|
1848 |
+
" <td>NaN</td>\n",
|
1849 |
+
" <td>NaN</td>\n",
|
1850 |
+
" <td>NaN</td>\n",
|
1851 |
+
" <td>NaN</td>\n",
|
1852 |
+
" <td>NaN</td>\n",
|
1853 |
+
" </tr>\n",
|
1854 |
+
" <tr>\n",
|
1855 |
+
" <th>Palau</th>\n",
|
1856 |
+
" <td>Oceania</td>\n",
|
1857 |
+
" <td>NaN</td>\n",
|
1858 |
+
" <td>NaN</td>\n",
|
1859 |
+
" <td>NaN</td>\n",
|
1860 |
+
" <td>NaN</td>\n",
|
1861 |
+
" <td>NaN</td>\n",
|
1862 |
+
" <td>NaN</td>\n",
|
1863 |
+
" <td>NaN</td>\n",
|
1864 |
+
" <td>NaN</td>\n",
|
1865 |
+
" <td>NaN</td>\n",
|
1866 |
+
" <td>NaN</td>\n",
|
1867 |
+
" </tr>\n",
|
1868 |
+
" <tr>\n",
|
1869 |
+
" <th>Papua New Guinea</th>\n",
|
1870 |
+
" <td>Oceania</td>\n",
|
1871 |
+
" <td>NaN</td>\n",
|
1872 |
+
" <td>NaN</td>\n",
|
1873 |
+
" <td>NaN</td>\n",
|
1874 |
+
" <td>NaN</td>\n",
|
1875 |
+
" <td>NaN</td>\n",
|
1876 |
+
" <td>NaN</td>\n",
|
1877 |
+
" <td>NaN</td>\n",
|
1878 |
+
" <td>NaN</td>\n",
|
1879 |
+
" <td>NaN</td>\n",
|
1880 |
+
" <td>NaN</td>\n",
|
1881 |
+
" </tr>\n",
|
1882 |
+
" <tr>\n",
|
1883 |
+
" <th>Samoa</th>\n",
|
1884 |
+
" <td>Oceania</td>\n",
|
1885 |
+
" <td>NaN</td>\n",
|
1886 |
+
" <td>NaN</td>\n",
|
1887 |
+
" <td>NaN</td>\n",
|
1888 |
+
" <td>NaN</td>\n",
|
1889 |
+
" <td>NaN</td>\n",
|
1890 |
+
" <td>NaN</td>\n",
|
1891 |
+
" <td>NaN</td>\n",
|
1892 |
+
" <td>NaN</td>\n",
|
1893 |
+
" <td>NaN</td>\n",
|
1894 |
+
" <td>NaN</td>\n",
|
1895 |
+
" </tr>\n",
|
1896 |
+
" <tr>\n",
|
1897 |
+
" <th>Solomon Islands</th>\n",
|
1898 |
+
" <td>Oceania</td>\n",
|
1899 |
+
" <td>NaN</td>\n",
|
1900 |
+
" <td>NaN</td>\n",
|
1901 |
+
" <td>NaN</td>\n",
|
1902 |
+
" <td>NaN</td>\n",
|
1903 |
+
" <td>NaN</td>\n",
|
1904 |
+
" <td>NaN</td>\n",
|
1905 |
+
" <td>NaN</td>\n",
|
1906 |
+
" <td>NaN</td>\n",
|
1907 |
+
" <td>NaN</td>\n",
|
1908 |
+
" <td>NaN</td>\n",
|
1909 |
+
" </tr>\n",
|
1910 |
+
" <tr>\n",
|
1911 |
+
" <th>Tonga</th>\n",
|
1912 |
+
" <td>Oceania</td>\n",
|
1913 |
+
" <td>NaN</td>\n",
|
1914 |
+
" <td>NaN</td>\n",
|
1915 |
+
" <td>NaN</td>\n",
|
1916 |
+
" <td>NaN</td>\n",
|
1917 |
+
" <td>NaN</td>\n",
|
1918 |
+
" <td>NaN</td>\n",
|
1919 |
+
" <td>NaN</td>\n",
|
1920 |
+
" <td>NaN</td>\n",
|
1921 |
+
" <td>NaN</td>\n",
|
1922 |
+
" <td>NaN</td>\n",
|
1923 |
+
" </tr>\n",
|
1924 |
+
" <tr>\n",
|
1925 |
+
" <th>Tuvalu</th>\n",
|
1926 |
+
" <td>Oceania</td>\n",
|
1927 |
+
" <td>NaN</td>\n",
|
1928 |
+
" <td>NaN</td>\n",
|
1929 |
+
" <td>NaN</td>\n",
|
1930 |
+
" <td>NaN</td>\n",
|
1931 |
+
" <td>NaN</td>\n",
|
1932 |
+
" <td>NaN</td>\n",
|
1933 |
+
" <td>NaN</td>\n",
|
1934 |
+
" <td>NaN</td>\n",
|
1935 |
+
" <td>NaN</td>\n",
|
1936 |
+
" <td>NaN</td>\n",
|
1937 |
+
" </tr>\n",
|
1938 |
+
" <tr>\n",
|
1939 |
+
" <th>Vanuatu</th>\n",
|
1940 |
+
" <td>Oceania</td>\n",
|
1941 |
+
" <td>NaN</td>\n",
|
1942 |
+
" <td>NaN</td>\n",
|
1943 |
+
" <td>NaN</td>\n",
|
1944 |
+
" <td>NaN</td>\n",
|
1945 |
+
" <td>NaN</td>\n",
|
1946 |
+
" <td>NaN</td>\n",
|
1947 |
+
" <td>NaN</td>\n",
|
1948 |
+
" <td>NaN</td>\n",
|
1949 |
+
" <td>NaN</td>\n",
|
1950 |
+
" <td>NaN</td>\n",
|
1951 |
+
" </tr>\n",
|
1952 |
+
" </tbody>\n",
|
1953 |
+
"</table>\n",
|
1954 |
+
"</div>"
|
1955 |
+
],
|
1956 |
+
"text/plain": [
|
1957 |
+
" Continent year Life Ladder \\\n",
|
1958 |
+
"Country \n",
|
1959 |
+
"Burkina Africa NaN NaN \n",
|
1960 |
+
"Cape Verde Africa NaN NaN \n",
|
1961 |
+
"Congo Africa NaN NaN \n",
|
1962 |
+
"Congo, Democratic Republic of Africa NaN NaN \n",
|
1963 |
+
"Equatorial Guinea Africa NaN NaN \n",
|
1964 |
+
"Eritrea Africa NaN NaN \n",
|
1965 |
+
"Guinea-Bissau Africa NaN NaN \n",
|
1966 |
+
"Sao Tome and Principe Africa NaN NaN \n",
|
1967 |
+
"Seychelles Africa NaN NaN \n",
|
1968 |
+
"Brunei Asia NaN NaN \n",
|
1969 |
+
"Burma (Myanmar) Asia NaN NaN \n",
|
1970 |
+
"East Timor Asia NaN NaN \n",
|
1971 |
+
"Korea, North Asia NaN NaN \n",
|
1972 |
+
"Korea, South Asia NaN NaN \n",
|
1973 |
+
"Russian Federation Asia NaN NaN \n",
|
1974 |
+
"Andorra Europe NaN NaN \n",
|
1975 |
+
"CZ Europe NaN NaN \n",
|
1976 |
+
"Liechtenstein Europe NaN NaN \n",
|
1977 |
+
"Macedonia Europe NaN NaN \n",
|
1978 |
+
"Monaco Europe NaN NaN \n",
|
1979 |
+
"San Marino Europe NaN NaN \n",
|
1980 |
+
"Vatican City Europe NaN NaN \n",
|
1981 |
+
"Antigua and Barbuda North America NaN NaN \n",
|
1982 |
+
"Bahamas North America NaN NaN \n",
|
1983 |
+
"Barbados North America NaN NaN \n",
|
1984 |
+
"Dominica North America NaN NaN \n",
|
1985 |
+
"Grenada North America NaN NaN \n",
|
1986 |
+
"Saint Kitts and Nevis North America NaN NaN \n",
|
1987 |
+
"Saint Lucia North America NaN NaN \n",
|
1988 |
+
"Saint Vincent and the Grenadines North America NaN NaN \n",
|
1989 |
+
"US North America NaN NaN \n",
|
1990 |
+
"Fiji Oceania NaN NaN \n",
|
1991 |
+
"Kiribati Oceania NaN NaN \n",
|
1992 |
+
"Marshall Islands Oceania NaN NaN \n",
|
1993 |
+
"Micronesia Oceania NaN NaN \n",
|
1994 |
+
"Nauru Oceania NaN NaN \n",
|
1995 |
+
"Palau Oceania NaN NaN \n",
|
1996 |
+
"Papua New Guinea Oceania NaN NaN \n",
|
1997 |
+
"Samoa Oceania NaN NaN \n",
|
1998 |
+
"Solomon Islands Oceania NaN NaN \n",
|
1999 |
+
"Tonga Oceania NaN NaN \n",
|
2000 |
+
"Tuvalu Oceania NaN NaN \n",
|
2001 |
+
"Vanuatu Oceania NaN NaN \n",
|
2002 |
+
"\n",
|
2003 |
+
" Log GDP per capita Social support \\\n",
|
2004 |
+
"Country \n",
|
2005 |
+
"Burkina NaN NaN \n",
|
2006 |
+
"Cape Verde NaN NaN \n",
|
2007 |
+
"Congo NaN NaN \n",
|
2008 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2009 |
+
"Equatorial Guinea NaN NaN \n",
|
2010 |
+
"Eritrea NaN NaN \n",
|
2011 |
+
"Guinea-Bissau NaN NaN \n",
|
2012 |
+
"Sao Tome and Principe NaN NaN \n",
|
2013 |
+
"Seychelles NaN NaN \n",
|
2014 |
+
"Brunei NaN NaN \n",
|
2015 |
+
"Burma (Myanmar) NaN NaN \n",
|
2016 |
+
"East Timor NaN NaN \n",
|
2017 |
+
"Korea, North NaN NaN \n",
|
2018 |
+
"Korea, South NaN NaN \n",
|
2019 |
+
"Russian Federation NaN NaN \n",
|
2020 |
+
"Andorra NaN NaN \n",
|
2021 |
+
"CZ NaN NaN \n",
|
2022 |
+
"Liechtenstein NaN NaN \n",
|
2023 |
+
"Macedonia NaN NaN \n",
|
2024 |
+
"Monaco NaN NaN \n",
|
2025 |
+
"San Marino NaN NaN \n",
|
2026 |
+
"Vatican City NaN NaN \n",
|
2027 |
+
"Antigua and Barbuda NaN NaN \n",
|
2028 |
+
"Bahamas NaN NaN \n",
|
2029 |
+
"Barbados NaN NaN \n",
|
2030 |
+
"Dominica NaN NaN \n",
|
2031 |
+
"Grenada NaN NaN \n",
|
2032 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2033 |
+
"Saint Lucia NaN NaN \n",
|
2034 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2035 |
+
"US NaN NaN \n",
|
2036 |
+
"Fiji NaN NaN \n",
|
2037 |
+
"Kiribati NaN NaN \n",
|
2038 |
+
"Marshall Islands NaN NaN \n",
|
2039 |
+
"Micronesia NaN NaN \n",
|
2040 |
+
"Nauru NaN NaN \n",
|
2041 |
+
"Palau NaN NaN \n",
|
2042 |
+
"Papua New Guinea NaN NaN \n",
|
2043 |
+
"Samoa NaN NaN \n",
|
2044 |
+
"Solomon Islands NaN NaN \n",
|
2045 |
+
"Tonga NaN NaN \n",
|
2046 |
+
"Tuvalu NaN NaN \n",
|
2047 |
+
"Vanuatu NaN NaN \n",
|
2048 |
+
"\n",
|
2049 |
+
" Healthy life expectancy at birth \\\n",
|
2050 |
+
"Country \n",
|
2051 |
+
"Burkina NaN \n",
|
2052 |
+
"Cape Verde NaN \n",
|
2053 |
+
"Congo NaN \n",
|
2054 |
+
"Congo, Democratic Republic of NaN \n",
|
2055 |
+
"Equatorial Guinea NaN \n",
|
2056 |
+
"Eritrea NaN \n",
|
2057 |
+
"Guinea-Bissau NaN \n",
|
2058 |
+
"Sao Tome and Principe NaN \n",
|
2059 |
+
"Seychelles NaN \n",
|
2060 |
+
"Brunei NaN \n",
|
2061 |
+
"Burma (Myanmar) NaN \n",
|
2062 |
+
"East Timor NaN \n",
|
2063 |
+
"Korea, North NaN \n",
|
2064 |
+
"Korea, South NaN \n",
|
2065 |
+
"Russian Federation NaN \n",
|
2066 |
+
"Andorra NaN \n",
|
2067 |
+
"CZ NaN \n",
|
2068 |
+
"Liechtenstein NaN \n",
|
2069 |
+
"Macedonia NaN \n",
|
2070 |
+
"Monaco NaN \n",
|
2071 |
+
"San Marino NaN \n",
|
2072 |
+
"Vatican City NaN \n",
|
2073 |
+
"Antigua and Barbuda NaN \n",
|
2074 |
+
"Bahamas NaN \n",
|
2075 |
+
"Barbados NaN \n",
|
2076 |
+
"Dominica NaN \n",
|
2077 |
+
"Grenada NaN \n",
|
2078 |
+
"Saint Kitts and Nevis NaN \n",
|
2079 |
+
"Saint Lucia NaN \n",
|
2080 |
+
"Saint Vincent and the Grenadines NaN \n",
|
2081 |
+
"US NaN \n",
|
2082 |
+
"Fiji NaN \n",
|
2083 |
+
"Kiribati NaN \n",
|
2084 |
+
"Marshall Islands NaN \n",
|
2085 |
+
"Micronesia NaN \n",
|
2086 |
+
"Nauru NaN \n",
|
2087 |
+
"Palau NaN \n",
|
2088 |
+
"Papua New Guinea NaN \n",
|
2089 |
+
"Samoa NaN \n",
|
2090 |
+
"Solomon Islands NaN \n",
|
2091 |
+
"Tonga NaN \n",
|
2092 |
+
"Tuvalu NaN \n",
|
2093 |
+
"Vanuatu NaN \n",
|
2094 |
+
"\n",
|
2095 |
+
" Freedom to make life choices Generosity \\\n",
|
2096 |
+
"Country \n",
|
2097 |
+
"Burkina NaN NaN \n",
|
2098 |
+
"Cape Verde NaN NaN \n",
|
2099 |
+
"Congo NaN NaN \n",
|
2100 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2101 |
+
"Equatorial Guinea NaN NaN \n",
|
2102 |
+
"Eritrea NaN NaN \n",
|
2103 |
+
"Guinea-Bissau NaN NaN \n",
|
2104 |
+
"Sao Tome and Principe NaN NaN \n",
|
2105 |
+
"Seychelles NaN NaN \n",
|
2106 |
+
"Brunei NaN NaN \n",
|
2107 |
+
"Burma (Myanmar) NaN NaN \n",
|
2108 |
+
"East Timor NaN NaN \n",
|
2109 |
+
"Korea, North NaN NaN \n",
|
2110 |
+
"Korea, South NaN NaN \n",
|
2111 |
+
"Russian Federation NaN NaN \n",
|
2112 |
+
"Andorra NaN NaN \n",
|
2113 |
+
"CZ NaN NaN \n",
|
2114 |
+
"Liechtenstein NaN NaN \n",
|
2115 |
+
"Macedonia NaN NaN \n",
|
2116 |
+
"Monaco NaN NaN \n",
|
2117 |
+
"San Marino NaN NaN \n",
|
2118 |
+
"Vatican City NaN NaN \n",
|
2119 |
+
"Antigua and Barbuda NaN NaN \n",
|
2120 |
+
"Bahamas NaN NaN \n",
|
2121 |
+
"Barbados NaN NaN \n",
|
2122 |
+
"Dominica NaN NaN \n",
|
2123 |
+
"Grenada NaN NaN \n",
|
2124 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2125 |
+
"Saint Lucia NaN NaN \n",
|
2126 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2127 |
+
"US NaN NaN \n",
|
2128 |
+
"Fiji NaN NaN \n",
|
2129 |
+
"Kiribati NaN NaN \n",
|
2130 |
+
"Marshall Islands NaN NaN \n",
|
2131 |
+
"Micronesia NaN NaN \n",
|
2132 |
+
"Nauru NaN NaN \n",
|
2133 |
+
"Palau NaN NaN \n",
|
2134 |
+
"Papua New Guinea NaN NaN \n",
|
2135 |
+
"Samoa NaN NaN \n",
|
2136 |
+
"Solomon Islands NaN NaN \n",
|
2137 |
+
"Tonga NaN NaN \n",
|
2138 |
+
"Tuvalu NaN NaN \n",
|
2139 |
+
"Vanuatu NaN NaN \n",
|
2140 |
+
"\n",
|
2141 |
+
" Perceptions of corruption Positive affect \\\n",
|
2142 |
+
"Country \n",
|
2143 |
+
"Burkina NaN NaN \n",
|
2144 |
+
"Cape Verde NaN NaN \n",
|
2145 |
+
"Congo NaN NaN \n",
|
2146 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2147 |
+
"Equatorial Guinea NaN NaN \n",
|
2148 |
+
"Eritrea NaN NaN \n",
|
2149 |
+
"Guinea-Bissau NaN NaN \n",
|
2150 |
+
"Sao Tome and Principe NaN NaN \n",
|
2151 |
+
"Seychelles NaN NaN \n",
|
2152 |
+
"Brunei NaN NaN \n",
|
2153 |
+
"Burma (Myanmar) NaN NaN \n",
|
2154 |
+
"East Timor NaN NaN \n",
|
2155 |
+
"Korea, North NaN NaN \n",
|
2156 |
+
"Korea, South NaN NaN \n",
|
2157 |
+
"Russian Federation NaN NaN \n",
|
2158 |
+
"Andorra NaN NaN \n",
|
2159 |
+
"CZ NaN NaN \n",
|
2160 |
+
"Liechtenstein NaN NaN \n",
|
2161 |
+
"Macedonia NaN NaN \n",
|
2162 |
+
"Monaco NaN NaN \n",
|
2163 |
+
"San Marino NaN NaN \n",
|
2164 |
+
"Vatican City NaN NaN \n",
|
2165 |
+
"Antigua and Barbuda NaN NaN \n",
|
2166 |
+
"Bahamas NaN NaN \n",
|
2167 |
+
"Barbados NaN NaN \n",
|
2168 |
+
"Dominica NaN NaN \n",
|
2169 |
+
"Grenada NaN NaN \n",
|
2170 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2171 |
+
"Saint Lucia NaN NaN \n",
|
2172 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2173 |
+
"US NaN NaN \n",
|
2174 |
+
"Fiji NaN NaN \n",
|
2175 |
+
"Kiribati NaN NaN \n",
|
2176 |
+
"Marshall Islands NaN NaN \n",
|
2177 |
+
"Micronesia NaN NaN \n",
|
2178 |
+
"Nauru NaN NaN \n",
|
2179 |
+
"Palau NaN NaN \n",
|
2180 |
+
"Papua New Guinea NaN NaN \n",
|
2181 |
+
"Samoa NaN NaN \n",
|
2182 |
+
"Solomon Islands NaN NaN \n",
|
2183 |
+
"Tonga NaN NaN \n",
|
2184 |
+
"Tuvalu NaN NaN \n",
|
2185 |
+
"Vanuatu NaN NaN \n",
|
2186 |
+
"\n",
|
2187 |
+
" Negative affect \n",
|
2188 |
+
"Country \n",
|
2189 |
+
"Burkina NaN \n",
|
2190 |
+
"Cape Verde NaN \n",
|
2191 |
+
"Congo NaN \n",
|
2192 |
+
"Congo, Democratic Republic of NaN \n",
|
2193 |
+
"Equatorial Guinea NaN \n",
|
2194 |
+
"Eritrea NaN \n",
|
2195 |
+
"Guinea-Bissau NaN \n",
|
2196 |
+
"Sao Tome and Principe NaN \n",
|
2197 |
+
"Seychelles NaN \n",
|
2198 |
+
"Brunei NaN \n",
|
2199 |
+
"Burma (Myanmar) NaN \n",
|
2200 |
+
"East Timor NaN \n",
|
2201 |
+
"Korea, North NaN \n",
|
2202 |
+
"Korea, South NaN \n",
|
2203 |
+
"Russian Federation NaN \n",
|
2204 |
+
"Andorra NaN \n",
|
2205 |
+
"CZ NaN \n",
|
2206 |
+
"Liechtenstein NaN \n",
|
2207 |
+
"Macedonia NaN \n",
|
2208 |
+
"Monaco NaN \n",
|
2209 |
+
"San Marino NaN \n",
|
2210 |
+
"Vatican City NaN \n",
|
2211 |
+
"Antigua and Barbuda NaN \n",
|
2212 |
+
"Bahamas NaN \n",
|
2213 |
+
"Barbados NaN \n",
|
2214 |
+
"Dominica NaN \n",
|
2215 |
+
"Grenada NaN \n",
|
2216 |
+
"Saint Kitts and Nevis NaN \n",
|
2217 |
+
"Saint Lucia NaN \n",
|
2218 |
+
"Saint Vincent and the Grenadines NaN \n",
|
2219 |
+
"US NaN \n",
|
2220 |
+
"Fiji NaN \n",
|
2221 |
+
"Kiribati NaN \n",
|
2222 |
+
"Marshall Islands NaN \n",
|
2223 |
+
"Micronesia NaN \n",
|
2224 |
+
"Nauru NaN \n",
|
2225 |
+
"Palau NaN \n",
|
2226 |
+
"Papua New Guinea NaN \n",
|
2227 |
+
"Samoa NaN \n",
|
2228 |
+
"Solomon Islands NaN \n",
|
2229 |
+
"Tonga NaN \n",
|
2230 |
+
"Tuvalu NaN \n",
|
2231 |
+
"Vanuatu NaN "
|
2232 |
+
]
|
2233 |
+
},
|
2234 |
+
"execution_count": 88,
|
2235 |
+
"metadata": {},
|
2236 |
+
"output_type": "execute_result"
|
2237 |
+
}
|
2238 |
+
],
|
2239 |
+
"source": [
|
2240 |
+
"df3"
|
2241 |
+
]
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"cell_type": "markdown",
|
2245 |
+
"id": "db01b828-d1b1-4708-b6bd-3b2dbed54746",
|
2246 |
+
"metadata": {},
|
2247 |
+
"source": [
|
2248 |
+
"> Note that I updated these in the spreadsheet manually with Excel because it was faster to do it by hand... I should go back when I have time to do it programmatically..."
|
2249 |
+
]
|
2250 |
+
}
|
2251 |
+
],
|
2252 |
+
"metadata": {
|
2253 |
+
"kernelspec": {
|
2254 |
+
"display_name": "Python 3 (ipykernel)",
|
2255 |
+
"language": "python",
|
2256 |
+
"name": "python3"
|
2257 |
+
},
|
2258 |
+
"language_info": {
|
2259 |
+
"codemirror_mode": {
|
2260 |
+
"name": "ipython",
|
2261 |
+
"version": 3
|
2262 |
+
},
|
2263 |
+
"file_extension": ".py",
|
2264 |
+
"mimetype": "text/x-python",
|
2265 |
+
"name": "python",
|
2266 |
+
"nbconvert_exporter": "python",
|
2267 |
+
"pygments_lexer": "ipython3",
|
2268 |
+
"version": "3.8.8"
|
2269 |
+
}
|
2270 |
+
},
|
2271 |
+
"nbformat": 4,
|
2272 |
+
"nbformat_minor": 5
|
2273 |
+
}
|
Assets/Countries/.ipynb_checkpoints/combined-countries-checkpoint.csv
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Country,year,Life Ladder,Log GDP per capita,Social support,Healthy life expectancy at birth,Freedom to make life choices,Generosity,Perceptions of corruption,Positive affect,Negative affect,Continent
|
2 |
+
0,Zimbabwe,2020,3.159802198410034,7.828756809234619,0.7172426581382751,56.79999923706055,0.6433029770851135,-0.00869576446712017,0.7885227799415588,0.702572762966156,0.34573638439178467,Africa
|
3 |
+
1,Benin,2020,4.407745838165283,8.10229206085205,0.5066360831260681,55.099998474121094,0.7831146717071533,-0.08348871022462845,0.5318836569786072,0.6085846424102783,0.3045124411582947,Africa
|
4 |
+
2,United Kingdom,2020,6.798177242279053,10.625810623168945,0.9293532371520996,72.69999694824219,0.8846240043640137,0.20250841975212097,0.49020394682884216,0.758163571357727,0.2246551215648651,Europe
|
5 |
+
3,Philippines,2020,5.079585075378418,9.061443328857422,0.7811403870582581,62.099998474121094,0.9320417046546936,-0.11554288119077682,0.7442836761474609,0.8035621047019958,0.3268890082836151,Asia
|
6 |
+
4,Iraq,2020,4.785165309906006,9.16718578338623,0.7078474760055542,61.400001525878906,0.7002145648002625,-0.020748287439346313,0.8491087555885315,0.6444642543792725,0.5315389037132263,Asia
|
7 |
+
5,Belgium,2020,6.838760852813721,10.770537376403809,0.9035586714744568,72.4000015258789,0.7669178247451782,-0.16378448903560638,0.6336267590522766,0.6465103030204773,0.2601887881755829,Europe
|
8 |
+
6,Iran,2020,4.864528179168701,,0.7572186589241028,66.5999984741211,0.5995944738388062,,0.7099016904830933,0.5824205279350281,0.47024500370025635,Asia
|
9 |
+
7,Poland,2020,6.139455318450928,10.371203422546387,0.9531717300415039,70.0999984741211,0.7674286961555481,-0.006559355650097132,0.7868736386299133,0.759842574596405,0.32893791794776917,Europe
|
10 |
+
8,Portugal,2020,5.767792224884033,10.370820045471191,0.8749903440475464,72.80000305175781,0.9131307601928711,-0.23809020221233368,0.8671571612358093,0.6477688550949097,0.3828126788139343,Europe
|
11 |
+
9,India,2020,4.225281238555908,8.70277214050293,0.616639256477356,60.900001525878906,0.9063913226127625,0.07482379674911499,0.7801240086555481,0.7524339556694031,0.3831625282764435,Asia
|
12 |
+
10,Israel,2020,7.194928169250488,10.538053512573242,0.9590721726417542,73.69999694824219,0.831315815448761,-0.04937167465686798,0.7476390600204468,0.6213983297348022,0.2428257316350937,Asia
|
13 |
+
11,Iceland,2020,7.575489521026611,10.824200630187988,0.9832860827445984,73.0,0.9486271739006042,0.16027399897575378,0.6440638899803162,0.8630176186561584,0.17179514467716217,Europe
|
14 |
+
12,United Arab Emirates,2020,6.458392143249512,11.052889823913574,0.8267555832862854,67.5,0.942161500453949,0.060019660741090775,,0.7516599297523499,0.2984803020954132,Asia
|
15 |
+
13,Hungary,2020,6.038049697875977,10.335147857666016,0.9434003829956055,68.4000015258789,0.7709680795669556,-0.12040461599826813,0.8361051082611084,0.7352383732795715,0.24005194008350372,Europe
|
16 |
+
14,Hong Kong S.A.R. of China,2020,5.295341491699219,,0.8129429817199707,,0.7054522633552551,,0.3803512156009674,0.608647346496582,0.210313618183136,
|
17 |
+
15,Bolivia,2020,5.559258937835693,8.997989654541016,0.8048108816146851,64.19999694824219,0.8770319223403931,-0.05376378819346428,0.8682082891464233,0.7898184657096863,0.3817911744117737,South America
|
18 |
+
16,Russia,2020,5.495288848876953,10.162235260009766,0.8870201706886292,65.0999984741211,0.7144664525985718,-0.07061229646205902,0.8230475187301636,0.6452149748802185,0.18952153623104095,
|
19 |
+
17,Saudi Arabia,2020,6.559588432312012,10.700662612915039,0.8902559280395508,66.9000015258789,0.8842201232910156,-0.11053171008825302,,0.7536076307296753,0.25119906663894653,Asia
|
20 |
+
18,Ireland,2020,7.03493070602417,11.322803497314453,0.9603110551834106,72.5,0.8820982575416565,0.013816552236676216,0.3556327223777771,0.7966610193252563,0.24644726514816284,Europe
|
21 |
+
19,Italy,2020,6.488356113433838,10.56257152557373,0.8898240327835083,74.0,0.7181554436683655,-0.14993725717067719,0.8440945744514465,0.6702133417129517,0.3110021650791168,Europe
|
22 |
+
20,Ukraine,2020,5.2696757316589355,9.427873611450195,0.884686291217804,65.19999694824219,0.7842734456062317,0.1263442039489746,0.9456689953804016,0.6877206563949585,0.28473618626594543,Europe
|
23 |
+
21,Kenya,2020,4.546584129333496,8.36528205871582,0.6737176179885864,61.29999923706055,0.7020344734191895,0.2599695920944214,0.8365160226821899,0.7334348559379578,0.2969804108142853,Africa
|
24 |
+
22,Latvia,2020,6.229008674621582,10.299590110778809,0.9280121922492981,67.4000015258789,0.8201116919517517,-0.077660471200943,0.808821976184845,0.7136284112930298,0.20158237218856812,Europe
|
25 |
+
23,Laos,2020,5.284390926361084,8.959955215454102,0.6603962779045105,59.5,0.9150282144546509,0.14143069088459015,0.7479977011680603,0.8216802477836609,0.3583492636680603,Asia
|
26 |
+
24,Nigeria,2020,5.50294828414917,8.484203338623047,0.7392894625663757,50.5,0.713061511516571,0.09940405935049057,0.9127744436264038,0.7439777255058289,0.31588682532310486,Africa
|
27 |
+
25,Austria,2020,7.213489055633545,10.851118087768555,0.924831211566925,73.5999984741211,0.9119098782539368,0.01103174313902855,0.4638301730155945,0.7693166136741638,0.20649965107440948,Europe
|
28 |
+
26,Kyrgyzstan,2020,6.24958610534668,8.503411293029785,0.9022229909896851,64.69999694824219,0.9348853230476379,0.10286574065685272,0.9313175082206726,0.8030253648757935,0.25781306624412537,Asia
|
29 |
+
27,North Macedonia,2020,5.053664207458496,9.690014839172363,0.7503741979598999,65.55988311767578,0.7872847318649292,0.13127434253692627,0.8774211406707764,0.6046268343925476,0.3651260733604431,
|
30 |
+
28,Kosovo,2020,6.294414043426514,,0.7923744916915894,,0.8798375725746155,,0.9098938703536987,0.7262398600578308,0.20145803689956665,
|
31 |
+
29,Norway,2020,7.290032386779785,11.042160034179688,0.9559799432754517,73.4000015258789,0.9645611047744751,0.07514853775501251,0.2710832953453064,0.823093831539154,0.2160339206457138,Europe
|
32 |
+
30,United States,2020,7.028088092803955,11.000656127929688,0.9373698234558105,68.0999984741211,0.8504472970962524,0.03410335257649422,0.6781246066093445,0.7873719930648804,0.2954990267753601,
|
33 |
+
31,Kazakhstan,2020,6.168269157409668,10.135335922241211,0.966448962688446,65.80000305175781,0.8721001148223877,-0.056175168603658676,0.6607988476753235,0.6841026544570923,0.15035991370677948,Asia
|
34 |
+
32,Bahrain,2020,6.173175811767578,10.619903564453125,0.8477450609207153,69.69999694824219,0.9452325701713562,0.13244104385375977,,0.7897949814796448,0.29683545231819153,Asia
|
35 |
+
33,Uruguay,2020,6.309681415557861,9.9371919631958,0.9210703372955322,69.19999694824219,0.9077619314193726,-0.08398690074682236,0.49100783467292786,0.8073509335517883,0.2646920680999756,South America
|
36 |
+
34,Jordan,2020,4.093991756439209,9.149994850158691,0.7088398933410645,67.19999694824219,0.7785334587097168,-0.14982588589191437,,,,Asia
|
37 |
+
35,Japan,2020,6.1179633140563965,10.579547882080078,0.8872491121292114,75.19999694824219,0.806036114692688,-0.2587452828884125,0.6086985468864441,0.7424694299697876,0.18646100163459778,Asia
|
38 |
+
36,Bangladesh,2020,5.27998685836792,8.47219467163086,0.7393379211425781,65.30000305175781,0.7774671912193298,-0.008851290680468082,0.7416591644287109,0.5823808312416077,0.33170878887176514,Asia
|
39 |
+
37,Ivory Coast,2020,5.256503582000732,8.564923286437988,0.6131063103675842,50.70000076293945,0.7699980139732361,0.015563689172267914,0.7766872644424438,0.6926469206809998,0.3399190902709961,Africa
|
40 |
+
38,Bosnia and Herzegovina,2020,5.5158162117004395,9.583344459533691,0.8985186815261841,68.4000015258789,0.740250825881958,0.13795417547225952,0.9160521626472473,0.6442373394966125,0.3254123032093048,Europe
|
41 |
+
39,Greece,2020,5.787615776062012,10.214579582214355,0.7785365581512451,72.80000305175781,0.5646136403083801,-0.2408064603805542,0.7643245458602905,0.6844578385353088,0.32168421149253845,Europe
|
42 |
+
40,Australia,2020,7.1373677253723145,10.75986385345459,0.9365170001983643,74.19999694824219,0.9052829742431641,0.21003030240535736,0.49109482765197754,0.7691817283630371,0.20507767796516418,Oceania
|
43 |
+
41,Croatia,2020,6.507992267608643,10.165817260742188,0.9229134917259216,71.4000015258789,0.8366576433181763,-0.06296810507774353,0.9609392881393433,0.7427805066108704,0.28560975193977356,Europe
|
44 |
+
42,Tunisia,2020,4.73081111907959,9.230624198913574,0.7190132141113281,67.5,0.6677581071853638,-0.20181423425674438,0.877354085445404,0.5846338868141174,0.43877434730529785,Africa
|
45 |
+
43,Spain,2020,6.502175331115723,10.488059043884277,0.934934675693512,75.0,0.7832565307617188,-0.12061331421136856,0.7299774885177612,0.6861776113510132,0.31661710143089294,Europe
|
46 |
+
44,Denmark,2020,7.514631271362305,10.909995079040527,0.9473713636398315,73.0,0.9379318356513977,0.05229302495718002,0.2138417512178421,0.8176636695861816,0.2271018922328949,Europe
|
47 |
+
45,Cameroon,2020,5.241077899932861,8.174633979797363,0.7200466394424438,54.29999923706055,0.6745091676712036,0.049266181886196136,0.8365172147750854,0.6296146512031555,0.3864789605140686,Africa
|
48 |
+
46,Czech Republic,2020,6.897091388702393,10.530134201049805,0.9640536904335022,71.30000305175781,0.9064220190048218,-0.1270223706960678,0.8836995959281921,0.8320576548576355,0.29044169187545776,
|
49 |
+
47,Cyprus,2020,6.259810447692871,,0.8055593967437744,74.0999984741211,0.7627823352813721,,0.8162317276000977,0.7588630318641663,0.28352245688438416,Europe
|
50 |
+
48,Sweden,2020,7.314341068267822,10.83790397644043,0.9355823397636414,72.80000305175781,0.9511815905570984,0.09081844985485077,0.20344014465808868,0.7663760781288147,0.2219332903623581,Europe
|
51 |
+
49,Canada,2020,7.024904727935791,10.729514122009277,0.930610716342926,74.0,0.8868921995162964,0.049636855721473694,0.43401235342025757,0.7959487438201904,0.30667373538017273,North America
|
52 |
+
50,South Korea,2020,5.79269552230835,10.64807415008545,0.8079522848129272,74.19999694824219,0.711480438709259,-0.1058678925037384,0.6646940112113953,0.6395556926727295,0.2470596581697464,
|
53 |
+
51,Switzerland,2020,7.508435249328613,11.080892562866211,0.9463164806365967,74.69999694824219,0.917343258857727,-0.06350205838680267,0.2803671360015869,0.7687047123908997,0.19322898983955383,Europe
|
54 |
+
52,Thailand,2020,5.884544372558594,9.769243240356445,0.8667026162147522,67.5999984741211,0.8404632806777954,0.2730555832386017,0.9183400273323059,0.7832698822021484,0.32616856694221497,Asia
|
55 |
+
53,Taiwan Province of China,2020,6.751067638397217,,0.9008325338363647,,0.7988347411155701,,0.7105674147605896,0.8453933596611023,0.08273695409297943,
|
56 |
+
54,Colombia,2020,5.709175109863281,9.495491027832031,0.7970352172851562,68.30000305175781,0.8401861190795898,-0.0846422091126442,0.807964026927948,0.7951326966285706,0.3401585817337036,South America
|
57 |
+
55,Tajikistan,2020,5.373398780822754,8.08035659790039,0.7897445559501648,64.69999694824219,,-0.04046706482768059,0.5497864484786987,0.7488976120948792,0.3441612720489502,Asia
|
58 |
+
56,Tanzania,2020,3.785684108734131,7.881270408630371,0.7398170828819275,58.5,0.83034348487854,0.29527199268341064,0.5206316709518433,0.6855331063270569,0.2711179256439209,Africa
|
59 |
+
57,China,2020,5.771064758300781,9.701754570007324,0.808334469795227,69.9000015258789,0.8911229968070984,-0.1032143384218216,,0.789345383644104,0.24491822719573975,Asia
|
60 |
+
58,Dominican Republic,2020,5.168409824371338,9.802446365356445,0.8061176538467407,66.4000015258789,0.8346429467201233,-0.1278340369462967,0.6361165642738342,0.7338669300079346,0.3139283061027527,North America
|
61 |
+
59,Cambodia,2020,4.3769850730896,8.36193561553955,0.7244226336479187,62.400001525878906,0.9630754590034485,0.052429765462875366,0.8630539774894714,0.8779535293579102,0.3898516297340393,Asia
|
62 |
+
60,Ghana,2020,5.319483280181885,8.589605331420898,0.6427033543586731,58.0,0.8237200379371643,0.19963206350803375,0.8470249176025391,0.7127659320831299,0.2527284324169159,Africa
|
63 |
+
61,Slovakia,2020,6.519098281860352,10.331512451171875,0.9541599750518799,69.5,0.7618966102600098,-0.07487351447343826,0.9005336761474609,0.7635828852653503,0.27444788813591003,Europe
|
64 |
+
62,Serbia,2020,6.04154634475708,9.788259506225586,0.8521018624305725,69.0,0.8434798717498779,0.14940130710601807,0.8244724869728088,0.6028461456298828,0.3575802743434906,Europe
|
65 |
+
63,Uganda,2020,4.640909671783447,7.684450149536133,0.8004611730575562,56.5,0.6874821186065674,0.14711755514144897,0.8775872588157654,0.698948860168457,0.42470666766166687,Africa
|
66 |
+
64,Germany,2020,7.3118977546691895,10.83349895477295,0.9050804972648621,72.80000305175781,0.8643560409545898,-0.06004804000258446,0.4240887761116028,0.7595943212509155,0.20592711865901947,Europe
|
67 |
+
65,Georgia,2020,5.123143196105957,9.569304466247559,0.7183459401130676,64.0999984741211,0.7643523812294006,-0.22112546861171722,0.5827347040176392,0.6108949184417725,0.2945120632648468,Europe
|
68 |
+
66,Brazil,2020,6.109717845916748,9.522140502929688,0.8308321237564087,66.80000305175781,0.7862350940704346,-0.05282001942396164,0.7287722229957581,0.6920238733291626,0.3891385495662689,South America
|
69 |
+
67,France,2020,6.714111804962158,10.643280029296875,0.9473540186882019,74.19999694824219,0.8233863115310669,-0.16896052658557892,0.5646405816078186,0.731813907623291,0.23095043003559113,Europe
|
70 |
+
68,Bulgaria,2020,5.597723007202148,9.990657806396484,0.9162423610687256,67.19999694824219,0.8182247877120972,-0.004322313703596592,0.9006329774856567,0.7058346271514893,0.22135105729103088,Europe
|
71 |
+
69,Finland,2020,7.889349937438965,10.750446319580078,0.9616207480430603,72.0999984741211,0.9624236822128296,-0.11553198844194412,0.16363589465618134,0.7442921996116638,0.19289757311344147,Europe
|
72 |
+
70,Ecuador,2020,5.354461669921875,9.243865013122559,0.8040085434913635,69.0999984741211,0.8285115361213684,-0.15709003806114197,0.8547804951667786,0.7899407148361206,0.4160279631614685,South America
|
73 |
+
71,Ethiopia,2020,4.549219608306885,7.710982799530029,0.8231375813484192,59.5,0.768694281578064,0.18849685788154602,0.7838224172592163,0.6693886518478394,0.25151434540748596,Africa
|
74 |
+
72,Slovenia,2020,6.462076187133789,10.477869987487793,0.9534375071525574,71.69999694824219,0.9584425687789917,-0.08135689049959183,0.7965574860572815,0.6099492311477661,0.3138525187969208,Europe
|
75 |
+
73,Estonia,2020,6.452563762664795,10.458588600158691,0.9577704668045044,69.0,0.9542005658149719,-0.08227915316820145,0.39783477783203125,0.8069238066673279,0.1876794993877411,Europe
|
76 |
+
74,El Salvador,2020,5.4619269371032715,9.018845558166504,0.6956243515014648,66.69999694824219,0.9239448308944702,-0.1264744997024536,0.5830363631248474,0.8389042019844055,0.32943978905677795,North America
|
77 |
+
75,Turkey,2020,4.861554145812988,10.219083786010742,0.8567302227020264,67.5999984741211,0.5103858709335327,-0.11088898777961731,0.7744171619415283,0.38429245352745056,0.4403873085975647,Asia
|
78 |
+
76,South Africa,2020,4.946800708770752,9.332463264465332,0.8910503387451172,57.29999923706055,0.7569462656974792,-0.014951311983168125,0.9124072194099426,0.8203377723693848,0.29427647590637207,Africa
|
79 |
+
77,Egypt,2020,4.4723968505859375,9.382726669311523,0.6727254986763,62.29999923706055,0.7695503234863281,-0.1123419776558876,,0.5989086627960205,0.442033588886261,Africa
|
80 |
+
78,Venezuela,2020,4.573829650878906,,0.8052242398262024,66.9000015258789,0.6118146181106567,,0.81131911277771,0.7223914265632629,0.396250456571579,South America
|
81 |
+
79,Chile,2020,6.1506428718566895,10.0201416015625,0.8884122967720032,70.0999984741211,0.7813835740089417,0.03299075737595558,0.8118188381195068,0.8146027326583862,0.3360286056995392,South America
|
82 |
+
80,Lithuania,2020,6.391378879547119,10.503606796264648,0.952544093132019,68.5,0.8240605592727661,-0.12178131192922592,0.829204797744751,0.6602295637130737,0.20191200077533722,Europe
|
83 |
+
81,Moldova,2020,5.811628818511963,9.462109565734863,0.8740617632865906,66.4000015258789,0.8590832352638245,-0.05827857926487923,0.9414389729499817,0.7272245287895203,0.2678360641002655,Europe
|
84 |
+
82,Netherlands,2020,7.504447937011719,10.900500297546387,0.9439561367034912,72.5,0.9345226287841797,0.15129804611206055,0.2806045114994049,0.7839906215667725,0.2465113252401352,Europe
|
85 |
+
83,Mongolia,2020,6.011364936828613,9.395559310913086,0.9177891612052917,62.70000076293945,0.7184910178184509,0.1413574516773224,0.8428276777267456,0.6364434957504272,0.25998303294181824,Asia
|
86 |
+
84,Mauritius,2020,6.015300273895264,9.972017288208008,0.8925659656524658,67.0,0.8425980806350708,-0.03669271990656853,0.771790087223053,0.7669844627380371,0.1384017914533615,Africa
|
87 |
+
85,Mexico,2020,5.964221000671387,9.78218936920166,0.7788162231445312,68.9000015258789,0.8733469843864441,-0.1193898618221283,0.778165876865387,0.8101091384887695,0.29155611991882324,North America
|
88 |
+
86,New Zealand,2020,7.257381916046143,10.600457191467285,0.9519907832145691,73.5999984741211,0.9181545972824097,0.1252596527338028,0.2827679514884949,0.8494150042533875,0.20854105055332184,Oceania
|
89 |
+
87,Namibia,2020,4.451010227203369,9.10413932800293,0.7405703067779541,57.099998474121094,0.6656819581985474,-0.10388018190860748,0.8103548288345337,0.6479195356369019,0.24754208326339722,Africa
|
90 |
+
88,Myanmar,2020,4.431364059448242,8.553914070129395,0.7957632541656494,59.599998474121094,0.8248707056045532,0.4702581763267517,0.6467021107673645,0.7997491955757141,0.2892182171344757,
|
91 |
+
89,Malta,2020,6.156822681427002,,0.9379202723503113,72.19999694824219,0.9306004643440247,,0.674626350402832,0.6014958620071411,0.41091322898864746,Europe
|
92 |
+
90,Zambia,2020,4.837992191314697,8.11658000946045,0.7668716311454773,56.29999923706055,0.7504224181175232,0.056029193103313446,0.8097497820854187,0.691082239151001,0.34452593326568604,Africa
|
93 |
+
91,Argentina,2020,5.900567054748535,9.850449562072754,0.8971038460731506,69.19999694824219,0.8233916163444519,-0.12235432863235474,0.8157804608345032,0.7635238766670227,0.34249693155288696,South America
|
94 |
+
92,Morocco,2020,4.80261754989624,8.870917320251465,0.5525200963020325,66.5,0.8189952373504639,-0.22857755422592163,0.8027402758598328,0.5871824026107788,0.2564311921596527,Africa
|
95 |
+
93,Albania,2020,5.364909648895264,9.497251510620117,0.7101150155067444,69.30000305175781,0.7536710500717163,0.006968025118112564,0.8913589715957642,0.6786612272262573,0.26506611704826355,Europe
|
96 |
+
94,Montenegro,2020,5.72216272354126,9.912668228149414,0.8871294856071472,68.9000015258789,0.8018550872802734,0.059815771877765656,0.8446871042251587,0.6032826900482178,0.41137781739234924,Europe
|
97 |
+
95,Guinea,2019,4.767684459686279,7.849340438842773,0.6551241874694824,55.5,0.691399097442627,0.09681724011898041,0.7555854916572571,0.6846469044685364,0.4733884334564209,Africa
|
98 |
+
96,Yemen,2019,4.19691276550293,,0.8700428009033203,57.5,0.6513082385063171,,0.7982282638549805,0.5428059101104736,0.2130432277917862,Asia
|
99 |
+
97,Guatemala,2019,6.2621750831604,9.063875198364258,0.774074375629425,65.0999984741211,0.9006763100624084,-0.06230298802256584,0.7725779414176941,0.859412670135498,0.3107892572879791,North America
|
100 |
+
98,Malaysia,2019,5.427954196929932,10.252403259277344,0.8424988389015198,67.19999694824219,0.9157786965370178,0.12332413345575333,0.7819439172744751,0.8341774940490723,0.17607168853282928,Asia
|
101 |
+
99,Rwanda,2019,3.2681522369384766,7.7080607414245605,0.48945823311805725,61.70000076293945,0.868999183177948,0.06406588107347488,0.16797089576721191,0.7360679507255554,0.4176676869392395,Africa
|
102 |
+
100,Sri Lanka,2019,4.21329927444458,9.478693962097168,0.8149391412734985,67.4000015258789,0.8242773413658142,0.051186613738536835,0.86334228515625,0.8163903951644897,0.3145427107810974,Asia
|
103 |
+
101,Malawi,2019,3.869123697280884,6.965763092041016,0.5489560961723328,58.29999923706055,0.7648642063140869,0.003596819471567869,0.680247962474823,0.5366970300674438,0.348162442445755,Africa
|
104 |
+
102,Nepal,2019,5.448724746704102,8.136457443237305,0.772273063659668,64.5999984741211,0.790347695350647,0.16697579622268677,0.7118424773216248,0.5357981324195862,0.35710030794143677,Asia
|
105 |
+
103,Swaziland,2019,4.396114826202393,9.069709777832031,0.759097695350647,51.27039337158203,0.5966824293136597,-0.19073791801929474,0.7235077619552612,0.7776272892951965,0.27959516644477844,Africa
|
106 |
+
104,Romania,2019,6.129942417144775,10.305913925170898,0.841905951499939,67.5,0.8475431799888611,-0.22142210602760315,0.9541307091712952,0.6974433660507202,0.24365922808647156,Europe
|
107 |
+
105,Senegal,2019,5.488736629486084,8.130020141601562,0.6876140832901001,60.0,0.7588417530059814,-0.01880391500890255,0.7956734299659729,0.7889730334281921,0.3319258391857147,Africa
|
108 |
+
106,Honduras,2019,5.930051326751709,8.653117179870605,0.7971483469009399,67.4000015258789,0.8461900353431702,0.06270892173051834,0.8149629235267639,0.8499549627304077,0.27888208627700806,North America
|
109 |
+
107,Mali,2019,4.987991809844971,7.752494812011719,0.7545580863952637,52.20000076293945,0.6704050898551941,-0.03785175830125809,0.846340000629425,0.7115226984024048,0.35776451230049133,Africa
|
110 |
+
108,Mauritania,2019,4.152619361877441,8.555842399597168,0.7981019616127014,57.29999923706055,0.6275051832199097,-0.10185665637254715,0.7428902983665466,0.6918314695358276,0.2597385048866272,Africa
|
111 |
+
109,Turkmenistan,2019,5.474299907684326,9.65118408203125,0.9815017580986023,62.599998474121094,0.8915268778800964,0.2848806381225586,,0.5099145174026489,0.18334324657917023,Asia
|
112 |
+
110,Burkina Faso,2019,4.7408928871154785,7.691488265991211,0.6831023693084717,54.400001525878906,0.6775468587875366,-0.004089894238859415,0.7293965816497803,0.6909258961677551,0.3647753894329071,
|
113 |
+
111,Algeria,2019,4.744627475738525,9.336946487426758,0.8032586574554443,66.0999984741211,0.3850834369659424,0.005086520221084356,0.740609347820282,0.5849443078041077,0.21519775688648224,Africa
|
114 |
+
112,Botswana,2019,3.4710848331451416,9.785069465637207,0.7736672163009644,59.599998474121094,0.8325426578521729,-0.23900093138217926,0.792079508304596,0.7117963433265686,0.2727217674255371,Africa
|
115 |
+
113,Sierra Leone,2019,3.4473814964294434,7.449131965637207,0.6107797622680664,52.400001525878906,0.7177695631980896,0.07405570149421692,0.8738614320755005,0.5133752226829529,0.43813446164131165,Africa
|
116 |
+
114,Mozambique,2019,4.932132720947266,7.154966831207275,0.742303729057312,55.20000076293945,0.8698102235794067,0.07274501770734787,0.6819004416465759,0.5872747302055359,0.384122759103775,Africa
|
117 |
+
115,Singapore,2019,6.378359794616699,11.485980033874512,0.9249183535575867,77.0999984741211,0.9380417466163635,0.027229677885770798,0.06961960345506668,0.7225980162620544,0.13806915283203125,Asia
|
118 |
+
116,Gambia,2019,5.1636271476745605,7.699349880218506,0.6938701272010803,55.29999923706055,0.6765952706336975,0.4101804792881012,0.7981081008911133,0.7728161811828613,0.40072327852249146,Africa
|
119 |
+
117,Gabon,2019,4.914393424987793,9.607087135314941,0.7630516886711121,60.20000076293945,0.736349880695343,-0.20251981914043427,0.8462542295455933,0.6927024126052856,0.4129609763622284,Africa
|
120 |
+
118,Indonesia,2019,5.346512794494629,9.376888275146484,0.8019180297851562,62.29999923706055,0.8658591508865356,0.5553480386734009,0.8607847690582275,0.8767140507698059,0.3017027974128723,Asia
|
121 |
+
119,Azerbaijan,2019,5.173389434814453,9.575250625610352,0.886756420135498,65.80000305175781,0.8542485237121582,-0.2141629159450531,0.4572606682777405,0.6425468325614929,0.16392025351524353,Europe
|
122 |
+
120,Chad,2019,4.250799179077148,7.364943981170654,0.6404520869255066,48.70000076293945,0.5372456908226013,0.05500093847513199,0.8322834968566895,0.5872111916542053,0.46006128191947937,Africa
|
123 |
+
121,Liberia,2019,5.121460914611816,7.263903617858887,0.7124737501144409,56.900001525878906,0.7058745622634888,0.050611626356840134,0.8284689784049988,0.635608971118927,0.3891325891017914,Africa
|
124 |
+
122,Libya,2019,5.330222129821777,9.627349853515625,0.826719343662262,62.29999923706055,0.7619643211364746,-0.07267285138368607,0.6864129900932312,0.7087408900260925,0.4007374346256256,Africa
|
125 |
+
123,Pakistan,2019,4.442717552185059,8.453290939331055,0.6172957420349121,58.900001525878906,0.6846755743026733,0.12372947484254837,0.775998055934906,0.5810673832893372,0.4242400825023651,Asia
|
126 |
+
124,Armenia,2019,5.488086700439453,9.521769523620605,0.7816038727760315,67.19999694824219,0.8443241119384766,-0.17236898839473724,0.583472728729248,0.5982378125190735,0.43046340346336365,Europe
|
127 |
+
125,Comoros,2019,4.608616352081299,8.033134460449219,0.6320129632949829,57.5,0.5382615327835083,0.0772530809044838,0.7622324824333191,0.7362217307090759,0.33616289496421814,Africa
|
128 |
+
126,Afghanistan,2019,2.375091791152954,7.6972479820251465,0.41997286677360535,52.400001525878906,0.3936561644077301,-0.10845886915922165,0.9238491058349609,0.35138705372810364,0.5024737119674683,Asia
|
129 |
+
127,Palestinian Territories,2019,4.482537269592285,,0.832550048828125,,0.653488278388977,,0.8292827606201172,0.6251764297485352,0.3996722996234894,
|
130 |
+
128,Nicaragua,2019,6.112545013427734,8.59546947479248,0.873863935470581,67.80000305175781,0.8826784491539001,0.029247265309095383,0.6219817399978638,0.835423469543457,0.33701297640800476,North America
|
131 |
+
129,Niger,2019,5.003544330596924,7.105849266052246,0.6769587397575378,54.0,0.8313618898391724,0.025959890335798264,0.7288551330566406,0.8159151673316956,0.3044382631778717,Africa
|
132 |
+
130,Lebanon,2019,4.024219512939453,9.596782684326172,0.8659685254096985,67.5999984741211,0.44700148701667786,-0.08108239620923996,0.890415608882904,0.32168975472450256,0.4944990277290344,Asia
|
133 |
+
131,Lesotho,2019,3.5117805004119873,7.925776958465576,0.7897053956985474,48.70000076293945,0.7163135409355164,-0.13053622841835022,0.9149514436721802,0.7348799109458923,0.27342551946640015,Africa
|
134 |
+
132,Uzbekistan,2019,6.154049396514893,8.853480339050293,0.9152759313583374,65.4000015258789,0.9702945351600647,0.3042975962162018,0.5111968517303467,0.8448085188865662,0.21974551677703857,Asia
|
135 |
+
133,North Cyprus,2019,5.466615200042725,,0.8032945394515991,,0.7927346229553223,,0.6400588750839233,0.49369287490844727,0.2964111268520355,
|
136 |
+
134,Kuwait,2019,6.106119632720947,10.816696166992188,0.8415197730064392,66.9000015258789,0.8672738075256348,-0.10416107624769211,,0.6953627467155457,0.3028763234615326,Asia
|
137 |
+
135,Congo (Brazzaville),2019,5.21262264251709,8.101092338562012,0.624768078327179,58.5,0.6864519715309143,-0.04605123773217201,0.740589439868927,0.6452539563179016,0.40504083037376404,
|
138 |
+
136,Peru,2019,5.9993815422058105,9.46093463897705,0.8090759515762329,68.4000015258789,0.8148059248924255,-0.1297357827425003,0.8736019134521484,0.820448100566864,0.3749854862689972,South America
|
139 |
+
137,Vietnam,2019,5.467451095581055,8.992330551147461,0.8475921154022217,68.0999984741211,0.9524691700935364,-0.12553076446056366,0.7878892421722412,0.7511599063873291,0.18561019003391266,Asia
|
140 |
+
138,Togo,2019,4.1794939041137695,7.375211238861084,0.5387021899223328,55.099998474121094,0.6174197793006897,0.06477482616901398,0.7366750240325928,0.5902292728424072,0.4438698887825012,Africa
|
141 |
+
139,Belarus,2019,5.821453094482422,9.860038757324219,0.9167404770851135,66.4000015258789,0.656933605670929,-0.18593330681324005,0.5459047555923462,0.5908505916595459,0.18982140719890594,Europe
|
142 |
+
140,Madagascar,2019,4.33908748626709,7.4062371253967285,0.7006101012229919,59.5,0.5495352149009705,-0.012468654662370682,0.7199826836585999,0.7231946587562561,0.3039596676826477,Africa
|
143 |
+
141,Costa Rica,2019,6.997618675231934,9.885446548461914,0.9060774445533752,71.5,0.9268301129341125,-0.14599433541297913,0.83562833070755,0.8483476042747498,0.3033272325992584,North America
|
144 |
+
142,Luxembourg,2019,7.40401554107666,11.648168563842773,0.9121045470237732,72.5999984741211,0.930321216583252,-0.04505761340260506,0.38959842920303345,0.7891863584518433,0.21163980662822723,Europe
|
145 |
+
143,Panama,2019,6.0859551429748535,10.356431007385254,0.8857213854789734,69.69999694824219,0.882961094379425,-0.1989849954843521,0.8688275218009949,0.877561628818512,0.2435666024684906,North America
|
146 |
+
144,Paraguay,2019,5.652625560760498,9.44814395904541,0.8924871683120728,65.9000015258789,0.8760526180267334,0.02811283804476261,0.8817861080169678,0.857724130153656,0.2751867175102234,South America
|
147 |
+
145,Jamaica,2019,6.309238910675049,9.186201095581055,0.8778144717216492,67.5,0.8906708359718323,-0.13679705560207367,0.8853300213813782,0.7520411014556885,0.1952841430902481,North America
|
148 |
+
146,Maldives,2018,5.197574615478516,9.8259859085083,0.9133150577545166,70.5999984741211,0.8547592759132385,0.0239978339523077,,,,Asia
|
149 |
+
147,Haiti,2018,3.6149280071258545,7.477138042449951,0.5379759073257446,55.70000076293945,0.5914683938026428,0.4215203523635864,0.7204447388648987,0.5841132998466492,0.3587200343608856,North America
|
150 |
+
148,Burundi,2018,3.775283098220825,6.635322093963623,0.48471522331237793,53.400001525878906,0.6463986039161682,-0.023876165971159935,0.5986076593399048,0.6664415001869202,0.3627665936946869,Africa
|
151 |
+
149,Congo (Kinshasa),2017,4.311033248901367,6.965845584869385,0.6696884036064148,52.900001525878906,0.704239547252655,0.06837817281484604,0.8091818690299988,0.5505259037017822,0.40426206588745117,
|
152 |
+
150,Central African Republic,2017,3.4758620262145996,6.816519260406494,0.31958913803100586,45.20000076293945,0.6452523469924927,0.07278610020875931,0.8895660042762756,0.6138651967048645,0.5993354916572571,Africa
|
153 |
+
151,Trinidad and Tobago,2017,6.191859722137451,10.182920455932617,0.9160290360450745,63.5,0.8591404557228088,0.014855396002531052,0.911336362361908,0.8464670777320862,0.24809880554676056,North America
|
154 |
+
152,South Sudan,2017,2.816622495651245,,0.556822657585144,51.0,0.4560110867023468,,0.7612696290016174,0.5856021642684937,0.5173637866973877,Africa
|
155 |
+
153,Somalia,2016,4.667941093444824,,0.5944165587425232,50.0,0.9173228144645691,,0.440801739692688,0.8914231657981873,0.19328223168849945,Africa
|
156 |
+
154,Syria,2015,3.4619128704071045,8.441536903381348,0.46391287446022034,55.20000076293945,0.44827085733413696,0.044834915548563004,0.685236930847168,0.36943960189819336,0.64258873462677,Asia
|
157 |
+
155,Qatar,2015,6.3745293617248535,11.485614776611328,,68.30000305175781,,,,,,Asia
|
158 |
+
156,Bhutan,2015,5.082128524780273,9.218923568725586,0.8475744128227234,60.20000076293945,0.8301015496253967,0.2774123549461365,0.6339557766914368,0.8096414804458618,0.3115893006324768,Asia
|
159 |
+
157,Sudan,2014,4.138672828674316,8.317068099975586,0.8106155395507812,55.119998931884766,0.3900958001613617,-0.06339464336633682,0.793785035610199,0.5408450365066528,0.3027249872684479,Africa
|
160 |
+
158,Angola,2014,3.7948379516601562,9.016735076904297,0.7546154856681824,54.599998474121094,0.3745415508747101,-0.167722687125206,0.8340756297111511,0.5785171389579773,0.36786413192749023,Africa
|
161 |
+
159,Belize,2014,5.955646514892578,8.883127212524414,0.7569324970245361,62.220001220703125,0.8735690712928772,0.021995628252625465,0.7821053862571716,0.7549773454666138,0.2816044092178345,North America
|
162 |
+
160,Suriname,2012,6.269286632537842,9.79708480834961,0.7972620725631714,62.2400016784668,0.8854884505271912,-0.07717316597700119,0.7512828707695007,0.7642226815223694,0.2503649890422821,South America
|
163 |
+
161,Somaliland region,2012,5.057314395904541,,0.786291241645813,,0.7582190036773682,,0.3338317275047302,0.7351891398429871,0.15242822468280792,
|
164 |
+
162,Oman,2011,6.852982044219971,10.382461547851562,,65.5,0.9162930250167847,0.02490849234163761,,,0.2951641082763672,Asia
|
165 |
+
163,Djibouti,2011,4.3691935539245605,7.880099296569824,0.6329732537269592,54.70000076293945,0.7464394569396973,-0.05731891468167305,0.5189301371574402,0.5793028473854065,0.1805926263332367,Africa
|
166 |
+
164,Guyana,2007,5.992826461791992,8.77328872680664,0.8487651944160461,57.2599983215332,0.6940056681632996,0.11003703624010086,0.8355690836906433,0.7675405740737915,0.29641976952552795,South America
|
167 |
+
165,Cuba,2006,5.417868614196777,,0.9695951342582703,68.44000244140625,0.28145793080329895,,,0.6467117667198181,0.27660152316093445,North America
|
Assets/Countries/.ipynb_checkpoints/countries-checkpoint.csv
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Country,Continent
|
2 |
+
Algeria,Africa
|
3 |
+
Angola,Africa
|
4 |
+
Benin,Africa
|
5 |
+
Botswana,Africa
|
6 |
+
Burkina,Africa
|
7 |
+
Burundi,Africa
|
8 |
+
Cameroon,Africa
|
9 |
+
Cape Verde,Africa
|
10 |
+
Central African Republic,Africa
|
11 |
+
Chad,Africa
|
12 |
+
Comoros,Africa
|
13 |
+
Congo,Africa
|
14 |
+
"Congo, Democratic Republic of",Africa
|
15 |
+
Djibouti,Africa
|
16 |
+
Egypt,Africa
|
17 |
+
Equatorial Guinea,Africa
|
18 |
+
Eritrea,Africa
|
19 |
+
Ethiopia,Africa
|
20 |
+
Gabon,Africa
|
21 |
+
Gambia,Africa
|
22 |
+
Ghana,Africa
|
23 |
+
Guinea,Africa
|
24 |
+
Guinea-Bissau,Africa
|
25 |
+
Ivory Coast,Africa
|
26 |
+
Kenya,Africa
|
27 |
+
Lesotho,Africa
|
28 |
+
Liberia,Africa
|
29 |
+
Libya,Africa
|
30 |
+
Madagascar,Africa
|
31 |
+
Malawi,Africa
|
32 |
+
Mali,Africa
|
33 |
+
Mauritania,Africa
|
34 |
+
Mauritius,Africa
|
35 |
+
Morocco,Africa
|
36 |
+
Mozambique,Africa
|
37 |
+
Namibia,Africa
|
38 |
+
Niger,Africa
|
39 |
+
Nigeria,Africa
|
40 |
+
Rwanda,Africa
|
41 |
+
Sao Tome and Principe,Africa
|
42 |
+
Senegal,Africa
|
43 |
+
Seychelles,Africa
|
44 |
+
Sierra Leone,Africa
|
45 |
+
Somalia,Africa
|
46 |
+
South Africa,Africa
|
47 |
+
South Sudan,Africa
|
48 |
+
Sudan,Africa
|
49 |
+
Swaziland,Africa
|
50 |
+
Tanzania,Africa
|
51 |
+
Togo,Africa
|
52 |
+
Tunisia,Africa
|
53 |
+
Uganda,Africa
|
54 |
+
Zambia,Africa
|
55 |
+
Zimbabwe,Africa
|
56 |
+
Afghanistan,Asia
|
57 |
+
Bahrain,Asia
|
58 |
+
Bangladesh,Asia
|
59 |
+
Bhutan,Asia
|
60 |
+
Brunei,Asia
|
61 |
+
Burma (Myanmar),Asia
|
62 |
+
Cambodia,Asia
|
63 |
+
China,Asia
|
64 |
+
East Timor,Asia
|
65 |
+
India,Asia
|
66 |
+
Indonesia,Asia
|
67 |
+
Iran,Asia
|
68 |
+
Iraq,Asia
|
69 |
+
Israel,Asia
|
70 |
+
Japan,Asia
|
71 |
+
Jordan,Asia
|
72 |
+
Kazakhstan,Asia
|
73 |
+
"Korea, North",Asia
|
74 |
+
"Korea, South",Asia
|
75 |
+
Kuwait,Asia
|
76 |
+
Kyrgyzstan,Asia
|
77 |
+
Laos,Asia
|
78 |
+
Lebanon,Asia
|
79 |
+
Malaysia,Asia
|
80 |
+
Maldives,Asia
|
81 |
+
Mongolia,Asia
|
82 |
+
Nepal,Asia
|
83 |
+
Oman,Asia
|
84 |
+
Pakistan,Asia
|
85 |
+
Philippines,Asia
|
86 |
+
Qatar,Asia
|
87 |
+
Russian Federation,Asia
|
88 |
+
Saudi Arabia,Asia
|
89 |
+
Singapore,Asia
|
90 |
+
Sri Lanka,Asia
|
91 |
+
Syria,Asia
|
92 |
+
Tajikistan,Asia
|
93 |
+
Thailand,Asia
|
94 |
+
Turkey,Asia
|
95 |
+
Turkmenistan,Asia
|
96 |
+
United Arab Emirates,Asia
|
97 |
+
Uzbekistan,Asia
|
98 |
+
Vietnam,Asia
|
99 |
+
Yemen,Asia
|
100 |
+
Albania,Europe
|
101 |
+
Andorra,Europe
|
102 |
+
Armenia,Europe
|
103 |
+
Austria,Europe
|
104 |
+
Azerbaijan,Europe
|
105 |
+
Belarus,Europe
|
106 |
+
Belgium,Europe
|
107 |
+
Bosnia and Herzegovina,Europe
|
108 |
+
Bulgaria,Europe
|
109 |
+
Croatia,Europe
|
110 |
+
Cyprus,Europe
|
111 |
+
CZ,Europe
|
112 |
+
Denmark,Europe
|
113 |
+
Estonia,Europe
|
114 |
+
Finland,Europe
|
115 |
+
France,Europe
|
116 |
+
Georgia,Europe
|
117 |
+
Germany,Europe
|
118 |
+
Greece,Europe
|
119 |
+
Hungary,Europe
|
120 |
+
Iceland,Europe
|
121 |
+
Ireland,Europe
|
122 |
+
Italy,Europe
|
123 |
+
Latvia,Europe
|
124 |
+
Liechtenstein,Europe
|
125 |
+
Lithuania,Europe
|
126 |
+
Luxembourg,Europe
|
127 |
+
Macedonia,Europe
|
128 |
+
Malta,Europe
|
129 |
+
Moldova,Europe
|
130 |
+
Monaco,Europe
|
131 |
+
Montenegro,Europe
|
132 |
+
Netherlands,Europe
|
133 |
+
Norway,Europe
|
134 |
+
Poland,Europe
|
135 |
+
Portugal,Europe
|
136 |
+
Romania,Europe
|
137 |
+
San Marino,Europe
|
138 |
+
Serbia,Europe
|
139 |
+
Slovakia,Europe
|
140 |
+
Slovenia,Europe
|
141 |
+
Spain,Europe
|
142 |
+
Sweden,Europe
|
143 |
+
Switzerland,Europe
|
144 |
+
Ukraine,Europe
|
145 |
+
United Kingdom,Europe
|
146 |
+
Vatican City,Europe
|
147 |
+
Antigua and Barbuda,North America
|
148 |
+
Bahamas,North America
|
149 |
+
Barbados,North America
|
150 |
+
Belize,North America
|
151 |
+
Canada,North America
|
152 |
+
Costa Rica,North America
|
153 |
+
Cuba,North America
|
154 |
+
Dominica,North America
|
155 |
+
Dominican Republic,North America
|
156 |
+
El Salvador,North America
|
157 |
+
Grenada,North America
|
158 |
+
Guatemala,North America
|
159 |
+
Haiti,North America
|
160 |
+
Honduras,North America
|
161 |
+
Jamaica,North America
|
162 |
+
Mexico,North America
|
163 |
+
Nicaragua,North America
|
164 |
+
Panama,North America
|
165 |
+
Saint Kitts and Nevis,North America
|
166 |
+
Saint Lucia,North America
|
167 |
+
Saint Vincent and the Grenadines,North America
|
168 |
+
Trinidad and Tobago,North America
|
169 |
+
US,North America
|
170 |
+
Australia,Oceania
|
171 |
+
Fiji,Oceania
|
172 |
+
Kiribati,Oceania
|
173 |
+
Marshall Islands,Oceania
|
174 |
+
Micronesia,Oceania
|
175 |
+
Nauru,Oceania
|
176 |
+
New Zealand,Oceania
|
177 |
+
Palau,Oceania
|
178 |
+
Papua New Guinea,Oceania
|
179 |
+
Samoa,Oceania
|
180 |
+
Solomon Islands,Oceania
|
181 |
+
Tonga,Oceania
|
182 |
+
Tuvalu,Oceania
|
183 |
+
Vanuatu,Oceania
|
184 |
+
Argentina,South America
|
185 |
+
Bolivia,South America
|
186 |
+
Brazil,South America
|
187 |
+
Chile,South America
|
188 |
+
Colombia,South America
|
189 |
+
Ecuador,South America
|
190 |
+
Guyana,South America
|
191 |
+
Paraguay,South America
|
192 |
+
Peru,South America
|
193 |
+
Suriname,South America
|
194 |
+
Uruguay,South America
|
195 |
+
Venezuela,South America
|
Assets/Countries/Country-Data-Origin.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Origin of the country data used in this project
|
2 |
+
|
3 |
+
I started by getting a list of countries on Github, from [
|
4 |
+
Daina Bouquin](https://github.com/dbouquin/IS_608/blob/master/NanosatDB_munging/Countries-Continents.csv), because it seemed relatively completey and contained continents. Then I started to think about secondary data that might be useful for exposing the bias in an algorithm and opted for the [World Happiness Report 2021](https://worldhappiness.report/ed/2021/#appendices-and-data). I added the continents to the countries in that file to ensure I could retain the initial categorization I used.
|
Assets/Countries/DataPanelWHR2021C2.xls
ADDED
Binary file (434 kB). View file
|
|
Assets/Countries/clean-countries.ipynb
ADDED
@@ -0,0 +1,2273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "daf46b53-319f-4973-9bb6-664135dd328e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd, spacy, nltk, numpy as np, re, ssl"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 56,
|
16 |
+
"id": "3cae7a11-7696-40fc-967e-7ecafcb2b0da",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_excel(\"Assets/Countries/DataPanelWHR2021C2.xls\")"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 57,
|
26 |
+
"id": "c1ebf3f3-1d38-4919-b60a-dc15e7bf907b",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/html": [
|
32 |
+
"<div>\n",
|
33 |
+
"<style scoped>\n",
|
34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
+
" vertical-align: middle;\n",
|
36 |
+
" }\n",
|
37 |
+
"\n",
|
38 |
+
" .dataframe tbody tr th {\n",
|
39 |
+
" vertical-align: top;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe thead th {\n",
|
43 |
+
" text-align: right;\n",
|
44 |
+
" }\n",
|
45 |
+
"</style>\n",
|
46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
+
" <thead>\n",
|
48 |
+
" <tr style=\"text-align: right;\">\n",
|
49 |
+
" <th></th>\n",
|
50 |
+
" <th>Country</th>\n",
|
51 |
+
" <th>year</th>\n",
|
52 |
+
" <th>Life Ladder</th>\n",
|
53 |
+
" <th>Log GDP per capita</th>\n",
|
54 |
+
" <th>Social support</th>\n",
|
55 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
56 |
+
" <th>Freedom to make life choices</th>\n",
|
57 |
+
" <th>Generosity</th>\n",
|
58 |
+
" <th>Perceptions of corruption</th>\n",
|
59 |
+
" <th>Positive affect</th>\n",
|
60 |
+
" <th>Negative affect</th>\n",
|
61 |
+
" </tr>\n",
|
62 |
+
" </thead>\n",
|
63 |
+
" <tbody>\n",
|
64 |
+
" <tr>\n",
|
65 |
+
" <th>0</th>\n",
|
66 |
+
" <td>Afghanistan</td>\n",
|
67 |
+
" <td>2008</td>\n",
|
68 |
+
" <td>3.723590</td>\n",
|
69 |
+
" <td>7.370100</td>\n",
|
70 |
+
" <td>0.450662</td>\n",
|
71 |
+
" <td>50.799999</td>\n",
|
72 |
+
" <td>0.718114</td>\n",
|
73 |
+
" <td>0.167640</td>\n",
|
74 |
+
" <td>0.881686</td>\n",
|
75 |
+
" <td>0.517637</td>\n",
|
76 |
+
" <td>0.258195</td>\n",
|
77 |
+
" </tr>\n",
|
78 |
+
" <tr>\n",
|
79 |
+
" <th>1</th>\n",
|
80 |
+
" <td>Afghanistan</td>\n",
|
81 |
+
" <td>2009</td>\n",
|
82 |
+
" <td>4.401778</td>\n",
|
83 |
+
" <td>7.539972</td>\n",
|
84 |
+
" <td>0.552308</td>\n",
|
85 |
+
" <td>51.200001</td>\n",
|
86 |
+
" <td>0.678896</td>\n",
|
87 |
+
" <td>0.190099</td>\n",
|
88 |
+
" <td>0.850035</td>\n",
|
89 |
+
" <td>0.583926</td>\n",
|
90 |
+
" <td>0.237092</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" <tr>\n",
|
93 |
+
" <th>2</th>\n",
|
94 |
+
" <td>Afghanistan</td>\n",
|
95 |
+
" <td>2010</td>\n",
|
96 |
+
" <td>4.758381</td>\n",
|
97 |
+
" <td>7.646709</td>\n",
|
98 |
+
" <td>0.539075</td>\n",
|
99 |
+
" <td>51.599998</td>\n",
|
100 |
+
" <td>0.600127</td>\n",
|
101 |
+
" <td>0.120590</td>\n",
|
102 |
+
" <td>0.706766</td>\n",
|
103 |
+
" <td>0.618265</td>\n",
|
104 |
+
" <td>0.275324</td>\n",
|
105 |
+
" </tr>\n",
|
106 |
+
" <tr>\n",
|
107 |
+
" <th>3</th>\n",
|
108 |
+
" <td>Afghanistan</td>\n",
|
109 |
+
" <td>2011</td>\n",
|
110 |
+
" <td>3.831719</td>\n",
|
111 |
+
" <td>7.619532</td>\n",
|
112 |
+
" <td>0.521104</td>\n",
|
113 |
+
" <td>51.919998</td>\n",
|
114 |
+
" <td>0.495901</td>\n",
|
115 |
+
" <td>0.162427</td>\n",
|
116 |
+
" <td>0.731109</td>\n",
|
117 |
+
" <td>0.611387</td>\n",
|
118 |
+
" <td>0.267175</td>\n",
|
119 |
+
" </tr>\n",
|
120 |
+
" <tr>\n",
|
121 |
+
" <th>4</th>\n",
|
122 |
+
" <td>Afghanistan</td>\n",
|
123 |
+
" <td>2012</td>\n",
|
124 |
+
" <td>3.782938</td>\n",
|
125 |
+
" <td>7.705479</td>\n",
|
126 |
+
" <td>0.520637</td>\n",
|
127 |
+
" <td>52.240002</td>\n",
|
128 |
+
" <td>0.530935</td>\n",
|
129 |
+
" <td>0.236032</td>\n",
|
130 |
+
" <td>0.775620</td>\n",
|
131 |
+
" <td>0.710385</td>\n",
|
132 |
+
" <td>0.267919</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" </tbody>\n",
|
135 |
+
"</table>\n",
|
136 |
+
"</div>"
|
137 |
+
],
|
138 |
+
"text/plain": [
|
139 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
140 |
+
"0 Afghanistan 2008 3.723590 7.370100 0.450662 \n",
|
141 |
+
"1 Afghanistan 2009 4.401778 7.539972 0.552308 \n",
|
142 |
+
"2 Afghanistan 2010 4.758381 7.646709 0.539075 \n",
|
143 |
+
"3 Afghanistan 2011 3.831719 7.619532 0.521104 \n",
|
144 |
+
"4 Afghanistan 2012 3.782938 7.705479 0.520637 \n",
|
145 |
+
"\n",
|
146 |
+
" Healthy life expectancy at birth Freedom to make life choices Generosity \\\n",
|
147 |
+
"0 50.799999 0.718114 0.167640 \n",
|
148 |
+
"1 51.200001 0.678896 0.190099 \n",
|
149 |
+
"2 51.599998 0.600127 0.120590 \n",
|
150 |
+
"3 51.919998 0.495901 0.162427 \n",
|
151 |
+
"4 52.240002 0.530935 0.236032 \n",
|
152 |
+
"\n",
|
153 |
+
" Perceptions of corruption Positive affect Negative affect \n",
|
154 |
+
"0 0.881686 0.517637 0.258195 \n",
|
155 |
+
"1 0.850035 0.583926 0.237092 \n",
|
156 |
+
"2 0.706766 0.618265 0.275324 \n",
|
157 |
+
"3 0.731109 0.611387 0.267175 \n",
|
158 |
+
"4 0.775620 0.710385 0.267919 "
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 57,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"df.head()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 59,
|
173 |
+
"id": "a1d054e6-8ca7-4675-913e-b0b500afe105",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"df_sorted = df.sort_values(by=['year'], ascending = False)"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 60,
|
183 |
+
"id": "42d08d97-fa68-40dc-9cfd-b0aa8acbb838",
|
184 |
+
"metadata": {},
|
185 |
+
"outputs": [
|
186 |
+
{
|
187 |
+
"data": {
|
188 |
+
"text/html": [
|
189 |
+
"<div>\n",
|
190 |
+
"<style scoped>\n",
|
191 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
192 |
+
" vertical-align: middle;\n",
|
193 |
+
" }\n",
|
194 |
+
"\n",
|
195 |
+
" .dataframe tbody tr th {\n",
|
196 |
+
" vertical-align: top;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe thead th {\n",
|
200 |
+
" text-align: right;\n",
|
201 |
+
" }\n",
|
202 |
+
"</style>\n",
|
203 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
204 |
+
" <thead>\n",
|
205 |
+
" <tr style=\"text-align: right;\">\n",
|
206 |
+
" <th></th>\n",
|
207 |
+
" <th>Country</th>\n",
|
208 |
+
" <th>year</th>\n",
|
209 |
+
" <th>Life Ladder</th>\n",
|
210 |
+
" <th>Log GDP per capita</th>\n",
|
211 |
+
" <th>Social support</th>\n",
|
212 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
213 |
+
" <th>Freedom to make life choices</th>\n",
|
214 |
+
" <th>Generosity</th>\n",
|
215 |
+
" <th>Perceptions of corruption</th>\n",
|
216 |
+
" <th>Positive affect</th>\n",
|
217 |
+
" <th>Negative affect</th>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" </thead>\n",
|
220 |
+
" <tbody>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1948</th>\n",
|
223 |
+
" <td>Zimbabwe</td>\n",
|
224 |
+
" <td>2020</td>\n",
|
225 |
+
" <td>3.159802</td>\n",
|
226 |
+
" <td>7.828757</td>\n",
|
227 |
+
" <td>0.717243</td>\n",
|
228 |
+
" <td>56.799999</td>\n",
|
229 |
+
" <td>0.643303</td>\n",
|
230 |
+
" <td>-0.008696</td>\n",
|
231 |
+
" <td>0.788523</td>\n",
|
232 |
+
" <td>0.702573</td>\n",
|
233 |
+
" <td>0.345736</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>174</th>\n",
|
237 |
+
" <td>Benin</td>\n",
|
238 |
+
" <td>2020</td>\n",
|
239 |
+
" <td>4.407746</td>\n",
|
240 |
+
" <td>8.102292</td>\n",
|
241 |
+
" <td>0.506636</td>\n",
|
242 |
+
" <td>55.099998</td>\n",
|
243 |
+
" <td>0.783115</td>\n",
|
244 |
+
" <td>-0.083489</td>\n",
|
245 |
+
" <td>0.531884</td>\n",
|
246 |
+
" <td>0.608585</td>\n",
|
247 |
+
" <td>0.304512</td>\n",
|
248 |
+
" </tr>\n",
|
249 |
+
" <tr>\n",
|
250 |
+
" <th>1835</th>\n",
|
251 |
+
" <td>United Kingdom</td>\n",
|
252 |
+
" <td>2020</td>\n",
|
253 |
+
" <td>6.798177</td>\n",
|
254 |
+
" <td>10.625811</td>\n",
|
255 |
+
" <td>0.929353</td>\n",
|
256 |
+
" <td>72.699997</td>\n",
|
257 |
+
" <td>0.884624</td>\n",
|
258 |
+
" <td>0.202508</td>\n",
|
259 |
+
" <td>0.490204</td>\n",
|
260 |
+
" <td>0.758164</td>\n",
|
261 |
+
" <td>0.224655</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <th>1394</th>\n",
|
265 |
+
" <td>Philippines</td>\n",
|
266 |
+
" <td>2020</td>\n",
|
267 |
+
" <td>5.079585</td>\n",
|
268 |
+
" <td>9.061443</td>\n",
|
269 |
+
" <td>0.781140</td>\n",
|
270 |
+
" <td>62.099998</td>\n",
|
271 |
+
" <td>0.932042</td>\n",
|
272 |
+
" <td>-0.115543</td>\n",
|
273 |
+
" <td>0.744284</td>\n",
|
274 |
+
" <td>0.803562</td>\n",
|
275 |
+
" <td>0.326889</td>\n",
|
276 |
+
" </tr>\n",
|
277 |
+
" <tr>\n",
|
278 |
+
" <th>785</th>\n",
|
279 |
+
" <td>Iraq</td>\n",
|
280 |
+
" <td>2020</td>\n",
|
281 |
+
" <td>4.785165</td>\n",
|
282 |
+
" <td>9.167186</td>\n",
|
283 |
+
" <td>0.707847</td>\n",
|
284 |
+
" <td>61.400002</td>\n",
|
285 |
+
" <td>0.700215</td>\n",
|
286 |
+
" <td>-0.020748</td>\n",
|
287 |
+
" <td>0.849109</td>\n",
|
288 |
+
" <td>0.644464</td>\n",
|
289 |
+
" <td>0.531539</td>\n",
|
290 |
+
" </tr>\n",
|
291 |
+
" </tbody>\n",
|
292 |
+
"</table>\n",
|
293 |
+
"</div>"
|
294 |
+
],
|
295 |
+
"text/plain": [
|
296 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
297 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
298 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
299 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
300 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
301 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
302 |
+
"\n",
|
303 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
304 |
+
"1948 56.799999 0.643303 \n",
|
305 |
+
"174 55.099998 0.783115 \n",
|
306 |
+
"1835 72.699997 0.884624 \n",
|
307 |
+
"1394 62.099998 0.932042 \n",
|
308 |
+
"785 61.400002 0.700215 \n",
|
309 |
+
"\n",
|
310 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \n",
|
311 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
312 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
313 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
314 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
315 |
+
"785 -0.020748 0.849109 0.644464 0.531539 "
|
316 |
+
]
|
317 |
+
},
|
318 |
+
"execution_count": 60,
|
319 |
+
"metadata": {},
|
320 |
+
"output_type": "execute_result"
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"source": [
|
324 |
+
"df_sorted.head()"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 61,
|
330 |
+
"id": "abb8954c-106f-42d1-bf2a-0200b8927306",
|
331 |
+
"metadata": {},
|
332 |
+
"outputs": [],
|
333 |
+
"source": [
|
334 |
+
"df_dedup = df_sorted.drop_duplicates(subset=['Country'])"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": 62,
|
340 |
+
"id": "969f5fcf-5dc6-4ce3-93f7-0f35473f3c73",
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [
|
343 |
+
{
|
344 |
+
"data": {
|
345 |
+
"text/html": [
|
346 |
+
"<div>\n",
|
347 |
+
"<style scoped>\n",
|
348 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
349 |
+
" vertical-align: middle;\n",
|
350 |
+
" }\n",
|
351 |
+
"\n",
|
352 |
+
" .dataframe tbody tr th {\n",
|
353 |
+
" vertical-align: top;\n",
|
354 |
+
" }\n",
|
355 |
+
"\n",
|
356 |
+
" .dataframe thead th {\n",
|
357 |
+
" text-align: right;\n",
|
358 |
+
" }\n",
|
359 |
+
"</style>\n",
|
360 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
361 |
+
" <thead>\n",
|
362 |
+
" <tr style=\"text-align: right;\">\n",
|
363 |
+
" <th></th>\n",
|
364 |
+
" <th>Country</th>\n",
|
365 |
+
" <th>year</th>\n",
|
366 |
+
" <th>Life Ladder</th>\n",
|
367 |
+
" <th>Log GDP per capita</th>\n",
|
368 |
+
" <th>Social support</th>\n",
|
369 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
370 |
+
" <th>Freedom to make life choices</th>\n",
|
371 |
+
" <th>Generosity</th>\n",
|
372 |
+
" <th>Perceptions of corruption</th>\n",
|
373 |
+
" <th>Positive affect</th>\n",
|
374 |
+
" <th>Negative affect</th>\n",
|
375 |
+
" </tr>\n",
|
376 |
+
" </thead>\n",
|
377 |
+
" <tbody>\n",
|
378 |
+
" <tr>\n",
|
379 |
+
" <th>1948</th>\n",
|
380 |
+
" <td>Zimbabwe</td>\n",
|
381 |
+
" <td>2020</td>\n",
|
382 |
+
" <td>3.159802</td>\n",
|
383 |
+
" <td>7.828757</td>\n",
|
384 |
+
" <td>0.717243</td>\n",
|
385 |
+
" <td>56.799999</td>\n",
|
386 |
+
" <td>0.643303</td>\n",
|
387 |
+
" <td>-0.008696</td>\n",
|
388 |
+
" <td>0.788523</td>\n",
|
389 |
+
" <td>0.702573</td>\n",
|
390 |
+
" <td>0.345736</td>\n",
|
391 |
+
" </tr>\n",
|
392 |
+
" <tr>\n",
|
393 |
+
" <th>174</th>\n",
|
394 |
+
" <td>Benin</td>\n",
|
395 |
+
" <td>2020</td>\n",
|
396 |
+
" <td>4.407746</td>\n",
|
397 |
+
" <td>8.102292</td>\n",
|
398 |
+
" <td>0.506636</td>\n",
|
399 |
+
" <td>55.099998</td>\n",
|
400 |
+
" <td>0.783115</td>\n",
|
401 |
+
" <td>-0.083489</td>\n",
|
402 |
+
" <td>0.531884</td>\n",
|
403 |
+
" <td>0.608585</td>\n",
|
404 |
+
" <td>0.304512</td>\n",
|
405 |
+
" </tr>\n",
|
406 |
+
" <tr>\n",
|
407 |
+
" <th>1835</th>\n",
|
408 |
+
" <td>United Kingdom</td>\n",
|
409 |
+
" <td>2020</td>\n",
|
410 |
+
" <td>6.798177</td>\n",
|
411 |
+
" <td>10.625811</td>\n",
|
412 |
+
" <td>0.929353</td>\n",
|
413 |
+
" <td>72.699997</td>\n",
|
414 |
+
" <td>0.884624</td>\n",
|
415 |
+
" <td>0.202508</td>\n",
|
416 |
+
" <td>0.490204</td>\n",
|
417 |
+
" <td>0.758164</td>\n",
|
418 |
+
" <td>0.224655</td>\n",
|
419 |
+
" </tr>\n",
|
420 |
+
" <tr>\n",
|
421 |
+
" <th>1394</th>\n",
|
422 |
+
" <td>Philippines</td>\n",
|
423 |
+
" <td>2020</td>\n",
|
424 |
+
" <td>5.079585</td>\n",
|
425 |
+
" <td>9.061443</td>\n",
|
426 |
+
" <td>0.781140</td>\n",
|
427 |
+
" <td>62.099998</td>\n",
|
428 |
+
" <td>0.932042</td>\n",
|
429 |
+
" <td>-0.115543</td>\n",
|
430 |
+
" <td>0.744284</td>\n",
|
431 |
+
" <td>0.803562</td>\n",
|
432 |
+
" <td>0.326889</td>\n",
|
433 |
+
" </tr>\n",
|
434 |
+
" <tr>\n",
|
435 |
+
" <th>785</th>\n",
|
436 |
+
" <td>Iraq</td>\n",
|
437 |
+
" <td>2020</td>\n",
|
438 |
+
" <td>4.785165</td>\n",
|
439 |
+
" <td>9.167186</td>\n",
|
440 |
+
" <td>0.707847</td>\n",
|
441 |
+
" <td>61.400002</td>\n",
|
442 |
+
" <td>0.700215</td>\n",
|
443 |
+
" <td>-0.020748</td>\n",
|
444 |
+
" <td>0.849109</td>\n",
|
445 |
+
" <td>0.644464</td>\n",
|
446 |
+
" <td>0.531539</td>\n",
|
447 |
+
" </tr>\n",
|
448 |
+
" </tbody>\n",
|
449 |
+
"</table>\n",
|
450 |
+
"</div>"
|
451 |
+
],
|
452 |
+
"text/plain": [
|
453 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
454 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
455 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
456 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
457 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
458 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
459 |
+
"\n",
|
460 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
461 |
+
"1948 56.799999 0.643303 \n",
|
462 |
+
"174 55.099998 0.783115 \n",
|
463 |
+
"1835 72.699997 0.884624 \n",
|
464 |
+
"1394 62.099998 0.932042 \n",
|
465 |
+
"785 61.400002 0.700215 \n",
|
466 |
+
"\n",
|
467 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \n",
|
468 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
469 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
470 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
471 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
472 |
+
"785 -0.020748 0.849109 0.644464 0.531539 "
|
473 |
+
]
|
474 |
+
},
|
475 |
+
"execution_count": 62,
|
476 |
+
"metadata": {},
|
477 |
+
"output_type": "execute_result"
|
478 |
+
}
|
479 |
+
],
|
480 |
+
"source": [
|
481 |
+
"df_dedup.head()"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": 63,
|
487 |
+
"id": "d080546c-4698-4edd-8b76-e3c94aee9862",
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [
|
490 |
+
{
|
491 |
+
"data": {
|
492 |
+
"text/plain": [
|
493 |
+
"1949"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
"execution_count": 63,
|
497 |
+
"metadata": {},
|
498 |
+
"output_type": "execute_result"
|
499 |
+
}
|
500 |
+
],
|
501 |
+
"source": [
|
502 |
+
"len(df_sorted)"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": 64,
|
508 |
+
"id": "6a817f5c-e871-4d69-9368-00a90efc6007",
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [
|
511 |
+
{
|
512 |
+
"data": {
|
513 |
+
"text/plain": [
|
514 |
+
"166"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
"execution_count": 64,
|
518 |
+
"metadata": {},
|
519 |
+
"output_type": "execute_result"
|
520 |
+
}
|
521 |
+
],
|
522 |
+
"source": [
|
523 |
+
"len(df_dedup)"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"cell_type": "code",
|
528 |
+
"execution_count": 65,
|
529 |
+
"id": "d6640a42-064e-4b31-b89d-de4f7d4240a3",
|
530 |
+
"metadata": {},
|
531 |
+
"outputs": [
|
532 |
+
{
|
533 |
+
"data": {
|
534 |
+
"text/html": [
|
535 |
+
"<div>\n",
|
536 |
+
"<style scoped>\n",
|
537 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
538 |
+
" vertical-align: middle;\n",
|
539 |
+
" }\n",
|
540 |
+
"\n",
|
541 |
+
" .dataframe tbody tr th {\n",
|
542 |
+
" vertical-align: top;\n",
|
543 |
+
" }\n",
|
544 |
+
"\n",
|
545 |
+
" .dataframe thead th {\n",
|
546 |
+
" text-align: right;\n",
|
547 |
+
" }\n",
|
548 |
+
"</style>\n",
|
549 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
550 |
+
" <thead>\n",
|
551 |
+
" <tr style=\"text-align: right;\">\n",
|
552 |
+
" <th></th>\n",
|
553 |
+
" <th>Country</th>\n",
|
554 |
+
" <th>Continent</th>\n",
|
555 |
+
" </tr>\n",
|
556 |
+
" </thead>\n",
|
557 |
+
" <tbody>\n",
|
558 |
+
" <tr>\n",
|
559 |
+
" <th>0</th>\n",
|
560 |
+
" <td>Algeria</td>\n",
|
561 |
+
" <td>Africa</td>\n",
|
562 |
+
" </tr>\n",
|
563 |
+
" <tr>\n",
|
564 |
+
" <th>1</th>\n",
|
565 |
+
" <td>Angola</td>\n",
|
566 |
+
" <td>Africa</td>\n",
|
567 |
+
" </tr>\n",
|
568 |
+
" <tr>\n",
|
569 |
+
" <th>2</th>\n",
|
570 |
+
" <td>Benin</td>\n",
|
571 |
+
" <td>Africa</td>\n",
|
572 |
+
" </tr>\n",
|
573 |
+
" <tr>\n",
|
574 |
+
" <th>3</th>\n",
|
575 |
+
" <td>Botswana</td>\n",
|
576 |
+
" <td>Africa</td>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" <tr>\n",
|
579 |
+
" <th>4</th>\n",
|
580 |
+
" <td>Burkina</td>\n",
|
581 |
+
" <td>Africa</td>\n",
|
582 |
+
" </tr>\n",
|
583 |
+
" </tbody>\n",
|
584 |
+
"</table>\n",
|
585 |
+
"</div>"
|
586 |
+
],
|
587 |
+
"text/plain": [
|
588 |
+
" Country Continent\n",
|
589 |
+
"0 Algeria Africa\n",
|
590 |
+
"1 Angola Africa\n",
|
591 |
+
"2 Benin Africa\n",
|
592 |
+
"3 Botswana Africa\n",
|
593 |
+
"4 Burkina Africa"
|
594 |
+
]
|
595 |
+
},
|
596 |
+
"execution_count": 65,
|
597 |
+
"metadata": {},
|
598 |
+
"output_type": "execute_result"
|
599 |
+
}
|
600 |
+
],
|
601 |
+
"source": [
|
602 |
+
"df_csv = pd.read_csv(\"Assets/Countries/countries.csv\")\n",
|
603 |
+
"df_csv.head()"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": 18,
|
609 |
+
"id": "a6e6f52e-cff7-4d78-b630-e71e07fa8842",
|
610 |
+
"metadata": {},
|
611 |
+
"outputs": [
|
612 |
+
{
|
613 |
+
"data": {
|
614 |
+
"text/plain": [
|
615 |
+
"194"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
"execution_count": 18,
|
619 |
+
"metadata": {},
|
620 |
+
"output_type": "execute_result"
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"source": [
|
624 |
+
"len(df_csv)"
|
625 |
+
]
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"cell_type": "code",
|
629 |
+
"execution_count": 66,
|
630 |
+
"id": "edaae740-75bf-42a2-afa6-ebbbbf50d792",
|
631 |
+
"metadata": {},
|
632 |
+
"outputs": [],
|
633 |
+
"source": [
|
634 |
+
"c1 = df_dedup[\"Country\"]\n",
|
635 |
+
"c2 = list(df_csv[\"Country\"])\n",
|
636 |
+
"c3 = [(country, country in c2) for country in c1]"
|
637 |
+
]
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"cell_type": "code",
|
641 |
+
"execution_count": 67,
|
642 |
+
"id": "5e86b02e-e5a3-4eaf-b045-74f0d0cfea08",
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [
|
645 |
+
{
|
646 |
+
"data": {
|
647 |
+
"text/plain": [
|
648 |
+
"True"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
"execution_count": 67,
|
652 |
+
"metadata": {},
|
653 |
+
"output_type": "execute_result"
|
654 |
+
}
|
655 |
+
],
|
656 |
+
"source": [
|
657 |
+
"\"Zimbabwe\" in c2"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"cell_type": "code",
|
662 |
+
"execution_count": 68,
|
663 |
+
"id": "921765a7-6f40-4d6a-9403-f5f8d8f26a65",
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [
|
666 |
+
{
|
667 |
+
"data": {
|
668 |
+
"text/plain": [
|
669 |
+
"[('Zimbabwe', True),\n",
|
670 |
+
" ('Benin', True),\n",
|
671 |
+
" ('United Kingdom', True),\n",
|
672 |
+
" ('Philippines', True),\n",
|
673 |
+
" ('Iraq', True),\n",
|
674 |
+
" ('Belgium', True),\n",
|
675 |
+
" ('Iran', True),\n",
|
676 |
+
" ('Poland', True),\n",
|
677 |
+
" ('Portugal', True),\n",
|
678 |
+
" ('India', True),\n",
|
679 |
+
" ('Israel', True),\n",
|
680 |
+
" ('Iceland', True),\n",
|
681 |
+
" ('United Arab Emirates', True),\n",
|
682 |
+
" ('Hungary', True),\n",
|
683 |
+
" ('Hong Kong S.A.R. of China', False),\n",
|
684 |
+
" ('Bolivia', True),\n",
|
685 |
+
" ('Russia', False),\n",
|
686 |
+
" ('Saudi Arabia', True),\n",
|
687 |
+
" ('Ireland', True),\n",
|
688 |
+
" ('Italy', True),\n",
|
689 |
+
" ('Ukraine', True),\n",
|
690 |
+
" ('Kenya', True),\n",
|
691 |
+
" ('Latvia', True),\n",
|
692 |
+
" ('Laos', True),\n",
|
693 |
+
" ('Nigeria', True),\n",
|
694 |
+
" ('Austria', True),\n",
|
695 |
+
" ('Kyrgyzstan', True),\n",
|
696 |
+
" ('North Macedonia', False),\n",
|
697 |
+
" ('Kosovo', False),\n",
|
698 |
+
" ('Norway', True),\n",
|
699 |
+
" ('United States', False),\n",
|
700 |
+
" ('Kazakhstan', True),\n",
|
701 |
+
" ('Bahrain', True),\n",
|
702 |
+
" ('Uruguay', True),\n",
|
703 |
+
" ('Jordan', True),\n",
|
704 |
+
" ('Japan', True),\n",
|
705 |
+
" ('Bangladesh', True),\n",
|
706 |
+
" ('Ivory Coast', True),\n",
|
707 |
+
" ('Bosnia and Herzegovina', True),\n",
|
708 |
+
" ('Greece', True),\n",
|
709 |
+
" ('Australia', True),\n",
|
710 |
+
" ('Croatia', True),\n",
|
711 |
+
" ('Tunisia', True),\n",
|
712 |
+
" ('Spain', True),\n",
|
713 |
+
" ('Denmark', True),\n",
|
714 |
+
" ('Cameroon', True),\n",
|
715 |
+
" ('Czech Republic', False),\n",
|
716 |
+
" ('Cyprus', True),\n",
|
717 |
+
" ('Sweden', True),\n",
|
718 |
+
" ('Canada', True),\n",
|
719 |
+
" ('South Korea', False),\n",
|
720 |
+
" ('Switzerland', True),\n",
|
721 |
+
" ('Thailand', True),\n",
|
722 |
+
" ('Taiwan Province of China', False),\n",
|
723 |
+
" ('Colombia', True),\n",
|
724 |
+
" ('Tajikistan', True),\n",
|
725 |
+
" ('Tanzania', True),\n",
|
726 |
+
" ('China', True),\n",
|
727 |
+
" ('Dominican Republic', True),\n",
|
728 |
+
" ('Cambodia', True),\n",
|
729 |
+
" ('Ghana', True),\n",
|
730 |
+
" ('Slovakia', True),\n",
|
731 |
+
" ('Serbia', True),\n",
|
732 |
+
" ('Uganda', True),\n",
|
733 |
+
" ('Germany', True),\n",
|
734 |
+
" ('Georgia', True),\n",
|
735 |
+
" ('Brazil', True),\n",
|
736 |
+
" ('France', True),\n",
|
737 |
+
" ('Bulgaria', True),\n",
|
738 |
+
" ('Finland', True),\n",
|
739 |
+
" ('Ecuador', True),\n",
|
740 |
+
" ('Ethiopia', True),\n",
|
741 |
+
" ('Slovenia', True),\n",
|
742 |
+
" ('Estonia', True),\n",
|
743 |
+
" ('El Salvador', True),\n",
|
744 |
+
" ('Turkey', True),\n",
|
745 |
+
" ('South Africa', True),\n",
|
746 |
+
" ('Egypt', True),\n",
|
747 |
+
" ('Venezuela', True),\n",
|
748 |
+
" ('Chile', True),\n",
|
749 |
+
" ('Lithuania', True),\n",
|
750 |
+
" ('Moldova', True),\n",
|
751 |
+
" ('Netherlands', True),\n",
|
752 |
+
" ('Mongolia', True),\n",
|
753 |
+
" ('Mauritius', True),\n",
|
754 |
+
" ('Mexico', True),\n",
|
755 |
+
" ('New Zealand', True),\n",
|
756 |
+
" ('Namibia', True),\n",
|
757 |
+
" ('Myanmar', False),\n",
|
758 |
+
" ('Malta', True),\n",
|
759 |
+
" ('Zambia', True),\n",
|
760 |
+
" ('Argentina', True),\n",
|
761 |
+
" ('Morocco', True),\n",
|
762 |
+
" ('Albania', True),\n",
|
763 |
+
" ('Montenegro', True),\n",
|
764 |
+
" ('Guinea', True),\n",
|
765 |
+
" ('Yemen', True),\n",
|
766 |
+
" ('Guatemala', True),\n",
|
767 |
+
" ('Malaysia', True),\n",
|
768 |
+
" ('Rwanda', True),\n",
|
769 |
+
" ('Sri Lanka', True),\n",
|
770 |
+
" ('Malawi', True),\n",
|
771 |
+
" ('Nepal', True),\n",
|
772 |
+
" ('Swaziland', True),\n",
|
773 |
+
" ('Romania', True),\n",
|
774 |
+
" ('Senegal', True),\n",
|
775 |
+
" ('Honduras', True),\n",
|
776 |
+
" ('Mali', True),\n",
|
777 |
+
" ('Mauritania', True),\n",
|
778 |
+
" ('Turkmenistan', True),\n",
|
779 |
+
" ('Burkina Faso', False),\n",
|
780 |
+
" ('Algeria', True),\n",
|
781 |
+
" ('Botswana', True),\n",
|
782 |
+
" ('Sierra Leone', True),\n",
|
783 |
+
" ('Mozambique', True),\n",
|
784 |
+
" ('Singapore', True),\n",
|
785 |
+
" ('Gambia', True),\n",
|
786 |
+
" ('Gabon', True),\n",
|
787 |
+
" ('Indonesia', True),\n",
|
788 |
+
" ('Azerbaijan', True),\n",
|
789 |
+
" ('Chad', True),\n",
|
790 |
+
" ('Liberia', True),\n",
|
791 |
+
" ('Libya', True),\n",
|
792 |
+
" ('Pakistan', True),\n",
|
793 |
+
" ('Armenia', True),\n",
|
794 |
+
" ('Comoros', True),\n",
|
795 |
+
" ('Afghanistan', True),\n",
|
796 |
+
" ('Palestinian Territories', False),\n",
|
797 |
+
" ('Nicaragua', True),\n",
|
798 |
+
" ('Niger', True),\n",
|
799 |
+
" ('Lebanon', True),\n",
|
800 |
+
" ('Lesotho', True),\n",
|
801 |
+
" ('Uzbekistan', True),\n",
|
802 |
+
" ('North Cyprus', False),\n",
|
803 |
+
" ('Kuwait', True),\n",
|
804 |
+
" ('Congo (Brazzaville)', False),\n",
|
805 |
+
" ('Peru', True),\n",
|
806 |
+
" ('Vietnam', True),\n",
|
807 |
+
" ('Togo', True),\n",
|
808 |
+
" ('Belarus', True),\n",
|
809 |
+
" ('Madagascar', True),\n",
|
810 |
+
" ('Costa Rica', True),\n",
|
811 |
+
" ('Luxembourg', True),\n",
|
812 |
+
" ('Panama', True),\n",
|
813 |
+
" ('Paraguay', True),\n",
|
814 |
+
" ('Jamaica', True),\n",
|
815 |
+
" ('Maldives', True),\n",
|
816 |
+
" ('Haiti', True),\n",
|
817 |
+
" ('Burundi', True),\n",
|
818 |
+
" ('Congo (Kinshasa)', False),\n",
|
819 |
+
" ('Central African Republic', True),\n",
|
820 |
+
" ('Trinidad and Tobago', True),\n",
|
821 |
+
" ('South Sudan', True),\n",
|
822 |
+
" ('Somalia', True),\n",
|
823 |
+
" ('Syria', True),\n",
|
824 |
+
" ('Qatar', True),\n",
|
825 |
+
" ('Bhutan', True),\n",
|
826 |
+
" ('Sudan', True),\n",
|
827 |
+
" ('Angola', True),\n",
|
828 |
+
" ('Belize', True),\n",
|
829 |
+
" ('Suriname', True),\n",
|
830 |
+
" ('Somaliland region', False),\n",
|
831 |
+
" ('Oman', True),\n",
|
832 |
+
" ('Djibouti', True),\n",
|
833 |
+
" ('Guyana', True),\n",
|
834 |
+
" ('Cuba', True)]"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
"execution_count": 68,
|
838 |
+
"metadata": {},
|
839 |
+
"output_type": "execute_result"
|
840 |
+
}
|
841 |
+
],
|
842 |
+
"source": [
|
843 |
+
"c3"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": 37,
|
849 |
+
"id": "ff74b057-7281-4ab2-82c5-367e949fbbed",
|
850 |
+
"metadata": {},
|
851 |
+
"outputs": [
|
852 |
+
{
|
853 |
+
"data": {
|
854 |
+
"text/plain": [
|
855 |
+
"['Hong Kong S.A.R. of China',\n",
|
856 |
+
" 'Russia',\n",
|
857 |
+
" 'North Macedonia',\n",
|
858 |
+
" 'Kosovo',\n",
|
859 |
+
" 'United States',\n",
|
860 |
+
" 'Czech Republic',\n",
|
861 |
+
" 'South Korea',\n",
|
862 |
+
" 'Taiwan Province of China',\n",
|
863 |
+
" 'Myanmar',\n",
|
864 |
+
" 'Burkina Faso',\n",
|
865 |
+
" 'Palestinian Territories',\n",
|
866 |
+
" 'North Cyprus',\n",
|
867 |
+
" 'Congo (Brazzaville)',\n",
|
868 |
+
" 'Congo (Kinshasa)',\n",
|
869 |
+
" 'Somaliland region']"
|
870 |
+
]
|
871 |
+
},
|
872 |
+
"execution_count": 37,
|
873 |
+
"metadata": {},
|
874 |
+
"output_type": "execute_result"
|
875 |
+
}
|
876 |
+
],
|
877 |
+
"source": [
|
878 |
+
"num = 0\n",
|
879 |
+
"missing = []\n",
|
880 |
+
"for pair in c3:\n",
|
881 |
+
" if pair[1]:\n",
|
882 |
+
" num +=1\n",
|
883 |
+
" else:\n",
|
884 |
+
" missing.append(pair[0]) \n",
|
885 |
+
"num\n",
|
886 |
+
"missing"
|
887 |
+
]
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"cell_type": "code",
|
891 |
+
"execution_count": 44,
|
892 |
+
"id": "50f20260-3ed6-4f4e-a558-e3c6374ecb26",
|
893 |
+
"metadata": {},
|
894 |
+
"outputs": [
|
895 |
+
{
|
896 |
+
"data": {
|
897 |
+
"text/plain": [
|
898 |
+
"'Africa'"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"execution_count": 44,
|
902 |
+
"metadata": {},
|
903 |
+
"output_type": "execute_result"
|
904 |
+
}
|
905 |
+
],
|
906 |
+
"source": [
|
907 |
+
"df_csv.loc[df_csv['Country'] == \"Madagascar\", 'Continent'].iloc[0]"
|
908 |
+
]
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"cell_type": "code",
|
912 |
+
"execution_count": 50,
|
913 |
+
"id": "9dfa66ef-1c2b-4893-8993-107c2e02a2c8",
|
914 |
+
"metadata": {},
|
915 |
+
"outputs": [
|
916 |
+
{
|
917 |
+
"data": {
|
918 |
+
"text/html": [
|
919 |
+
"<div>\n",
|
920 |
+
"<style scoped>\n",
|
921 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
922 |
+
" vertical-align: middle;\n",
|
923 |
+
" }\n",
|
924 |
+
"\n",
|
925 |
+
" .dataframe tbody tr th {\n",
|
926 |
+
" vertical-align: top;\n",
|
927 |
+
" }\n",
|
928 |
+
"\n",
|
929 |
+
" .dataframe thead th {\n",
|
930 |
+
" text-align: right;\n",
|
931 |
+
" }\n",
|
932 |
+
"</style>\n",
|
933 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
934 |
+
" <thead>\n",
|
935 |
+
" <tr style=\"text-align: right;\">\n",
|
936 |
+
" <th></th>\n",
|
937 |
+
" <th>Country name</th>\n",
|
938 |
+
" <th>year</th>\n",
|
939 |
+
" <th>Life Ladder</th>\n",
|
940 |
+
" <th>Log GDP per capita</th>\n",
|
941 |
+
" <th>Social support</th>\n",
|
942 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
943 |
+
" <th>Freedom to make life choices</th>\n",
|
944 |
+
" <th>Generosity</th>\n",
|
945 |
+
" <th>Perceptions of corruption</th>\n",
|
946 |
+
" <th>Positive affect</th>\n",
|
947 |
+
" <th>Negative affect</th>\n",
|
948 |
+
" <th>Continent</th>\n",
|
949 |
+
" </tr>\n",
|
950 |
+
" </thead>\n",
|
951 |
+
" <tbody>\n",
|
952 |
+
" <tr>\n",
|
953 |
+
" <th>1948</th>\n",
|
954 |
+
" <td>Zimbabwe</td>\n",
|
955 |
+
" <td>2020</td>\n",
|
956 |
+
" <td>3.159802</td>\n",
|
957 |
+
" <td>7.828757</td>\n",
|
958 |
+
" <td>0.717243</td>\n",
|
959 |
+
" <td>56.799999</td>\n",
|
960 |
+
" <td>0.643303</td>\n",
|
961 |
+
" <td>-0.008696</td>\n",
|
962 |
+
" <td>0.788523</td>\n",
|
963 |
+
" <td>0.702573</td>\n",
|
964 |
+
" <td>0.345736</td>\n",
|
965 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
966 |
+
" </tr>\n",
|
967 |
+
" <tr>\n",
|
968 |
+
" <th>174</th>\n",
|
969 |
+
" <td>Benin</td>\n",
|
970 |
+
" <td>2020</td>\n",
|
971 |
+
" <td>4.407746</td>\n",
|
972 |
+
" <td>8.102292</td>\n",
|
973 |
+
" <td>0.506636</td>\n",
|
974 |
+
" <td>55.099998</td>\n",
|
975 |
+
" <td>0.783115</td>\n",
|
976 |
+
" <td>-0.083489</td>\n",
|
977 |
+
" <td>0.531884</td>\n",
|
978 |
+
" <td>0.608585</td>\n",
|
979 |
+
" <td>0.304512</td>\n",
|
980 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
981 |
+
" </tr>\n",
|
982 |
+
" <tr>\n",
|
983 |
+
" <th>1835</th>\n",
|
984 |
+
" <td>United Kingdom</td>\n",
|
985 |
+
" <td>2020</td>\n",
|
986 |
+
" <td>6.798177</td>\n",
|
987 |
+
" <td>10.625811</td>\n",
|
988 |
+
" <td>0.929353</td>\n",
|
989 |
+
" <td>72.699997</td>\n",
|
990 |
+
" <td>0.884624</td>\n",
|
991 |
+
" <td>0.202508</td>\n",
|
992 |
+
" <td>0.490204</td>\n",
|
993 |
+
" <td>0.758164</td>\n",
|
994 |
+
" <td>0.224655</td>\n",
|
995 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
996 |
+
" </tr>\n",
|
997 |
+
" <tr>\n",
|
998 |
+
" <th>1394</th>\n",
|
999 |
+
" <td>Philippines</td>\n",
|
1000 |
+
" <td>2020</td>\n",
|
1001 |
+
" <td>5.079585</td>\n",
|
1002 |
+
" <td>9.061443</td>\n",
|
1003 |
+
" <td>0.781140</td>\n",
|
1004 |
+
" <td>62.099998</td>\n",
|
1005 |
+
" <td>0.932042</td>\n",
|
1006 |
+
" <td>-0.115543</td>\n",
|
1007 |
+
" <td>0.744284</td>\n",
|
1008 |
+
" <td>0.803562</td>\n",
|
1009 |
+
" <td>0.326889</td>\n",
|
1010 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
1011 |
+
" </tr>\n",
|
1012 |
+
" <tr>\n",
|
1013 |
+
" <th>785</th>\n",
|
1014 |
+
" <td>Iraq</td>\n",
|
1015 |
+
" <td>2020</td>\n",
|
1016 |
+
" <td>4.785165</td>\n",
|
1017 |
+
" <td>9.167186</td>\n",
|
1018 |
+
" <td>0.707847</td>\n",
|
1019 |
+
" <td>61.400002</td>\n",
|
1020 |
+
" <td>0.700215</td>\n",
|
1021 |
+
" <td>-0.020748</td>\n",
|
1022 |
+
" <td>0.849109</td>\n",
|
1023 |
+
" <td>0.644464</td>\n",
|
1024 |
+
" <td>0.531539</td>\n",
|
1025 |
+
" <td><pandas.core.indexing._iLocIndexer object at 0...</td>\n",
|
1026 |
+
" </tr>\n",
|
1027 |
+
" </tbody>\n",
|
1028 |
+
"</table>\n",
|
1029 |
+
"</div>"
|
1030 |
+
],
|
1031 |
+
"text/plain": [
|
1032 |
+
" Country name year Life Ladder Log GDP per capita Social support \\\n",
|
1033 |
+
"1948 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
1034 |
+
"174 Benin 2020 4.407746 8.102292 0.506636 \n",
|
1035 |
+
"1835 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
1036 |
+
"1394 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
1037 |
+
"785 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
1038 |
+
"\n",
|
1039 |
+
" Healthy life expectancy at birth Freedom to make life choices \\\n",
|
1040 |
+
"1948 56.799999 0.643303 \n",
|
1041 |
+
"174 55.099998 0.783115 \n",
|
1042 |
+
"1835 72.699997 0.884624 \n",
|
1043 |
+
"1394 62.099998 0.932042 \n",
|
1044 |
+
"785 61.400002 0.700215 \n",
|
1045 |
+
"\n",
|
1046 |
+
" Generosity Perceptions of corruption Positive affect Negative affect \\\n",
|
1047 |
+
"1948 -0.008696 0.788523 0.702573 0.345736 \n",
|
1048 |
+
"174 -0.083489 0.531884 0.608585 0.304512 \n",
|
1049 |
+
"1835 0.202508 0.490204 0.758164 0.224655 \n",
|
1050 |
+
"1394 -0.115543 0.744284 0.803562 0.326889 \n",
|
1051 |
+
"785 -0.020748 0.849109 0.644464 0.531539 \n",
|
1052 |
+
"\n",
|
1053 |
+
" Continent \n",
|
1054 |
+
"1948 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1055 |
+
"174 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1056 |
+
"1835 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1057 |
+
"1394 <pandas.core.indexing._iLocIndexer object at 0... \n",
|
1058 |
+
"785 <pandas.core.indexing._iLocIndexer object at 0... "
|
1059 |
+
]
|
1060 |
+
},
|
1061 |
+
"execution_count": 50,
|
1062 |
+
"metadata": {},
|
1063 |
+
"output_type": "execute_result"
|
1064 |
+
}
|
1065 |
+
],
|
1066 |
+
"source": [
|
1067 |
+
"df_dedup.head()"
|
1068 |
+
]
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"cell_type": "code",
|
1072 |
+
"execution_count": 74,
|
1073 |
+
"id": "b1fcd392-abfb-42a8-8485-f3fbd6a155d1",
|
1074 |
+
"metadata": {},
|
1075 |
+
"outputs": [],
|
1076 |
+
"source": [
|
1077 |
+
"df_cont = df_dedup.set_index('Country').join(df_csv.set_index('Country'), on='Country', how='left')"
|
1078 |
+
]
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"cell_type": "code",
|
1082 |
+
"execution_count": 77,
|
1083 |
+
"id": "55ec121c-534e-4e25-88e9-5ab8267fd66b",
|
1084 |
+
"metadata": {},
|
1085 |
+
"outputs": [],
|
1086 |
+
"source": [
|
1087 |
+
"df_cont = df_cont.reset_index()"
|
1088 |
+
]
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"cell_type": "code",
|
1092 |
+
"execution_count": 78,
|
1093 |
+
"id": "8ddaf798-772d-489d-b2fc-32d4cd76ae50",
|
1094 |
+
"metadata": {},
|
1095 |
+
"outputs": [
|
1096 |
+
{
|
1097 |
+
"data": {
|
1098 |
+
"text/plain": [
|
1099 |
+
"166"
|
1100 |
+
]
|
1101 |
+
},
|
1102 |
+
"execution_count": 78,
|
1103 |
+
"metadata": {},
|
1104 |
+
"output_type": "execute_result"
|
1105 |
+
}
|
1106 |
+
],
|
1107 |
+
"source": [
|
1108 |
+
"len(df_cont)"
|
1109 |
+
]
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"cell_type": "code",
|
1113 |
+
"execution_count": 79,
|
1114 |
+
"id": "7420265a-e079-443c-9be0-01becf73a836",
|
1115 |
+
"metadata": {},
|
1116 |
+
"outputs": [
|
1117 |
+
{
|
1118 |
+
"data": {
|
1119 |
+
"text/html": [
|
1120 |
+
"<div>\n",
|
1121 |
+
"<style scoped>\n",
|
1122 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1123 |
+
" vertical-align: middle;\n",
|
1124 |
+
" }\n",
|
1125 |
+
"\n",
|
1126 |
+
" .dataframe tbody tr th {\n",
|
1127 |
+
" vertical-align: top;\n",
|
1128 |
+
" }\n",
|
1129 |
+
"\n",
|
1130 |
+
" .dataframe thead th {\n",
|
1131 |
+
" text-align: right;\n",
|
1132 |
+
" }\n",
|
1133 |
+
"</style>\n",
|
1134 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1135 |
+
" <thead>\n",
|
1136 |
+
" <tr style=\"text-align: right;\">\n",
|
1137 |
+
" <th></th>\n",
|
1138 |
+
" <th>Country</th>\n",
|
1139 |
+
" <th>year</th>\n",
|
1140 |
+
" <th>Life Ladder</th>\n",
|
1141 |
+
" <th>Log GDP per capita</th>\n",
|
1142 |
+
" <th>Social support</th>\n",
|
1143 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
1144 |
+
" <th>Freedom to make life choices</th>\n",
|
1145 |
+
" <th>Generosity</th>\n",
|
1146 |
+
" <th>Perceptions of corruption</th>\n",
|
1147 |
+
" <th>Positive affect</th>\n",
|
1148 |
+
" <th>Negative affect</th>\n",
|
1149 |
+
" <th>Continent</th>\n",
|
1150 |
+
" </tr>\n",
|
1151 |
+
" </thead>\n",
|
1152 |
+
" <tbody>\n",
|
1153 |
+
" <tr>\n",
|
1154 |
+
" <th>0</th>\n",
|
1155 |
+
" <td>Zimbabwe</td>\n",
|
1156 |
+
" <td>2020</td>\n",
|
1157 |
+
" <td>3.159802</td>\n",
|
1158 |
+
" <td>7.828757</td>\n",
|
1159 |
+
" <td>0.717243</td>\n",
|
1160 |
+
" <td>56.799999</td>\n",
|
1161 |
+
" <td>0.643303</td>\n",
|
1162 |
+
" <td>-0.008696</td>\n",
|
1163 |
+
" <td>0.788523</td>\n",
|
1164 |
+
" <td>0.702573</td>\n",
|
1165 |
+
" <td>0.345736</td>\n",
|
1166 |
+
" <td>Africa</td>\n",
|
1167 |
+
" </tr>\n",
|
1168 |
+
" <tr>\n",
|
1169 |
+
" <th>1</th>\n",
|
1170 |
+
" <td>Benin</td>\n",
|
1171 |
+
" <td>2020</td>\n",
|
1172 |
+
" <td>4.407746</td>\n",
|
1173 |
+
" <td>8.102292</td>\n",
|
1174 |
+
" <td>0.506636</td>\n",
|
1175 |
+
" <td>55.099998</td>\n",
|
1176 |
+
" <td>0.783115</td>\n",
|
1177 |
+
" <td>-0.083489</td>\n",
|
1178 |
+
" <td>0.531884</td>\n",
|
1179 |
+
" <td>0.608585</td>\n",
|
1180 |
+
" <td>0.304512</td>\n",
|
1181 |
+
" <td>Africa</td>\n",
|
1182 |
+
" </tr>\n",
|
1183 |
+
" <tr>\n",
|
1184 |
+
" <th>2</th>\n",
|
1185 |
+
" <td>United Kingdom</td>\n",
|
1186 |
+
" <td>2020</td>\n",
|
1187 |
+
" <td>6.798177</td>\n",
|
1188 |
+
" <td>10.625811</td>\n",
|
1189 |
+
" <td>0.929353</td>\n",
|
1190 |
+
" <td>72.699997</td>\n",
|
1191 |
+
" <td>0.884624</td>\n",
|
1192 |
+
" <td>0.202508</td>\n",
|
1193 |
+
" <td>0.490204</td>\n",
|
1194 |
+
" <td>0.758164</td>\n",
|
1195 |
+
" <td>0.224655</td>\n",
|
1196 |
+
" <td>Europe</td>\n",
|
1197 |
+
" </tr>\n",
|
1198 |
+
" <tr>\n",
|
1199 |
+
" <th>3</th>\n",
|
1200 |
+
" <td>Philippines</td>\n",
|
1201 |
+
" <td>2020</td>\n",
|
1202 |
+
" <td>5.079585</td>\n",
|
1203 |
+
" <td>9.061443</td>\n",
|
1204 |
+
" <td>0.781140</td>\n",
|
1205 |
+
" <td>62.099998</td>\n",
|
1206 |
+
" <td>0.932042</td>\n",
|
1207 |
+
" <td>-0.115543</td>\n",
|
1208 |
+
" <td>0.744284</td>\n",
|
1209 |
+
" <td>0.803562</td>\n",
|
1210 |
+
" <td>0.326889</td>\n",
|
1211 |
+
" <td>Asia</td>\n",
|
1212 |
+
" </tr>\n",
|
1213 |
+
" <tr>\n",
|
1214 |
+
" <th>4</th>\n",
|
1215 |
+
" <td>Iraq</td>\n",
|
1216 |
+
" <td>2020</td>\n",
|
1217 |
+
" <td>4.785165</td>\n",
|
1218 |
+
" <td>9.167186</td>\n",
|
1219 |
+
" <td>0.707847</td>\n",
|
1220 |
+
" <td>61.400002</td>\n",
|
1221 |
+
" <td>0.700215</td>\n",
|
1222 |
+
" <td>-0.020748</td>\n",
|
1223 |
+
" <td>0.849109</td>\n",
|
1224 |
+
" <td>0.644464</td>\n",
|
1225 |
+
" <td>0.531539</td>\n",
|
1226 |
+
" <td>Asia</td>\n",
|
1227 |
+
" </tr>\n",
|
1228 |
+
" </tbody>\n",
|
1229 |
+
"</table>\n",
|
1230 |
+
"</div>"
|
1231 |
+
],
|
1232 |
+
"text/plain": [
|
1233 |
+
" Country year Life Ladder Log GDP per capita Social support \\\n",
|
1234 |
+
"0 Zimbabwe 2020 3.159802 7.828757 0.717243 \n",
|
1235 |
+
"1 Benin 2020 4.407746 8.102292 0.506636 \n",
|
1236 |
+
"2 United Kingdom 2020 6.798177 10.625811 0.929353 \n",
|
1237 |
+
"3 Philippines 2020 5.079585 9.061443 0.781140 \n",
|
1238 |
+
"4 Iraq 2020 4.785165 9.167186 0.707847 \n",
|
1239 |
+
"\n",
|
1240 |
+
" Healthy life expectancy at birth Freedom to make life choices Generosity \\\n",
|
1241 |
+
"0 56.799999 0.643303 -0.008696 \n",
|
1242 |
+
"1 55.099998 0.783115 -0.083489 \n",
|
1243 |
+
"2 72.699997 0.884624 0.202508 \n",
|
1244 |
+
"3 62.099998 0.932042 -0.115543 \n",
|
1245 |
+
"4 61.400002 0.700215 -0.020748 \n",
|
1246 |
+
"\n",
|
1247 |
+
" Perceptions of corruption Positive affect Negative affect Continent \n",
|
1248 |
+
"0 0.788523 0.702573 0.345736 Africa \n",
|
1249 |
+
"1 0.531884 0.608585 0.304512 Africa \n",
|
1250 |
+
"2 0.490204 0.758164 0.224655 Europe \n",
|
1251 |
+
"3 0.744284 0.803562 0.326889 Asia \n",
|
1252 |
+
"4 0.849109 0.644464 0.531539 Asia "
|
1253 |
+
]
|
1254 |
+
},
|
1255 |
+
"execution_count": 79,
|
1256 |
+
"metadata": {},
|
1257 |
+
"output_type": "execute_result"
|
1258 |
+
}
|
1259 |
+
],
|
1260 |
+
"source": [
|
1261 |
+
"df_cont.head()"
|
1262 |
+
]
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"cell_type": "code",
|
1266 |
+
"execution_count": 81,
|
1267 |
+
"id": "fb26fc2f-f591-4e66-9357-0928c2c46e89",
|
1268 |
+
"metadata": {},
|
1269 |
+
"outputs": [],
|
1270 |
+
"source": [
|
1271 |
+
"# I updated the name of the output so that I don't accidentally overwrite the manual work I did at the end to add in the last few outliers.\n",
|
1272 |
+
"#df_cont.to_csv(\"Assets/Countries/base-combined-countries.csv\")"
|
1273 |
+
]
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"cell_type": "code",
|
1277 |
+
"execution_count": 83,
|
1278 |
+
"id": "445a79b2-0023-4812-b606-1ff9cb7720e7",
|
1279 |
+
"metadata": {},
|
1280 |
+
"outputs": [],
|
1281 |
+
"source": [
|
1282 |
+
"df3 = df_csv.set_index('Country').join(df_dedup.set_index('Country'), on='Country', how='left')"
|
1283 |
+
]
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"cell_type": "code",
|
1287 |
+
"execution_count": 87,
|
1288 |
+
"id": "59c3d6bb-11ea-4b4f-9a9e-d9b58561e8f2",
|
1289 |
+
"metadata": {},
|
1290 |
+
"outputs": [],
|
1291 |
+
"source": [
|
1292 |
+
"df3 = df3[df3.year.isnull()]"
|
1293 |
+
]
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"cell_type": "code",
|
1297 |
+
"execution_count": 88,
|
1298 |
+
"id": "3b76dce1-a02f-4b09-bc44-b0e28271bc56",
|
1299 |
+
"metadata": {},
|
1300 |
+
"outputs": [
|
1301 |
+
{
|
1302 |
+
"data": {
|
1303 |
+
"text/html": [
|
1304 |
+
"<div>\n",
|
1305 |
+
"<style scoped>\n",
|
1306 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1307 |
+
" vertical-align: middle;\n",
|
1308 |
+
" }\n",
|
1309 |
+
"\n",
|
1310 |
+
" .dataframe tbody tr th {\n",
|
1311 |
+
" vertical-align: top;\n",
|
1312 |
+
" }\n",
|
1313 |
+
"\n",
|
1314 |
+
" .dataframe thead th {\n",
|
1315 |
+
" text-align: right;\n",
|
1316 |
+
" }\n",
|
1317 |
+
"</style>\n",
|
1318 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1319 |
+
" <thead>\n",
|
1320 |
+
" <tr style=\"text-align: right;\">\n",
|
1321 |
+
" <th></th>\n",
|
1322 |
+
" <th>Continent</th>\n",
|
1323 |
+
" <th>year</th>\n",
|
1324 |
+
" <th>Life Ladder</th>\n",
|
1325 |
+
" <th>Log GDP per capita</th>\n",
|
1326 |
+
" <th>Social support</th>\n",
|
1327 |
+
" <th>Healthy life expectancy at birth</th>\n",
|
1328 |
+
" <th>Freedom to make life choices</th>\n",
|
1329 |
+
" <th>Generosity</th>\n",
|
1330 |
+
" <th>Perceptions of corruption</th>\n",
|
1331 |
+
" <th>Positive affect</th>\n",
|
1332 |
+
" <th>Negative affect</th>\n",
|
1333 |
+
" </tr>\n",
|
1334 |
+
" <tr>\n",
|
1335 |
+
" <th>Country</th>\n",
|
1336 |
+
" <th></th>\n",
|
1337 |
+
" <th></th>\n",
|
1338 |
+
" <th></th>\n",
|
1339 |
+
" <th></th>\n",
|
1340 |
+
" <th></th>\n",
|
1341 |
+
" <th></th>\n",
|
1342 |
+
" <th></th>\n",
|
1343 |
+
" <th></th>\n",
|
1344 |
+
" <th></th>\n",
|
1345 |
+
" <th></th>\n",
|
1346 |
+
" <th></th>\n",
|
1347 |
+
" </tr>\n",
|
1348 |
+
" </thead>\n",
|
1349 |
+
" <tbody>\n",
|
1350 |
+
" <tr>\n",
|
1351 |
+
" <th>Burkina</th>\n",
|
1352 |
+
" <td>Africa</td>\n",
|
1353 |
+
" <td>NaN</td>\n",
|
1354 |
+
" <td>NaN</td>\n",
|
1355 |
+
" <td>NaN</td>\n",
|
1356 |
+
" <td>NaN</td>\n",
|
1357 |
+
" <td>NaN</td>\n",
|
1358 |
+
" <td>NaN</td>\n",
|
1359 |
+
" <td>NaN</td>\n",
|
1360 |
+
" <td>NaN</td>\n",
|
1361 |
+
" <td>NaN</td>\n",
|
1362 |
+
" <td>NaN</td>\n",
|
1363 |
+
" </tr>\n",
|
1364 |
+
" <tr>\n",
|
1365 |
+
" <th>Cape Verde</th>\n",
|
1366 |
+
" <td>Africa</td>\n",
|
1367 |
+
" <td>NaN</td>\n",
|
1368 |
+
" <td>NaN</td>\n",
|
1369 |
+
" <td>NaN</td>\n",
|
1370 |
+
" <td>NaN</td>\n",
|
1371 |
+
" <td>NaN</td>\n",
|
1372 |
+
" <td>NaN</td>\n",
|
1373 |
+
" <td>NaN</td>\n",
|
1374 |
+
" <td>NaN</td>\n",
|
1375 |
+
" <td>NaN</td>\n",
|
1376 |
+
" <td>NaN</td>\n",
|
1377 |
+
" </tr>\n",
|
1378 |
+
" <tr>\n",
|
1379 |
+
" <th>Congo</th>\n",
|
1380 |
+
" <td>Africa</td>\n",
|
1381 |
+
" <td>NaN</td>\n",
|
1382 |
+
" <td>NaN</td>\n",
|
1383 |
+
" <td>NaN</td>\n",
|
1384 |
+
" <td>NaN</td>\n",
|
1385 |
+
" <td>NaN</td>\n",
|
1386 |
+
" <td>NaN</td>\n",
|
1387 |
+
" <td>NaN</td>\n",
|
1388 |
+
" <td>NaN</td>\n",
|
1389 |
+
" <td>NaN</td>\n",
|
1390 |
+
" <td>NaN</td>\n",
|
1391 |
+
" </tr>\n",
|
1392 |
+
" <tr>\n",
|
1393 |
+
" <th>Congo, Democratic Republic of</th>\n",
|
1394 |
+
" <td>Africa</td>\n",
|
1395 |
+
" <td>NaN</td>\n",
|
1396 |
+
" <td>NaN</td>\n",
|
1397 |
+
" <td>NaN</td>\n",
|
1398 |
+
" <td>NaN</td>\n",
|
1399 |
+
" <td>NaN</td>\n",
|
1400 |
+
" <td>NaN</td>\n",
|
1401 |
+
" <td>NaN</td>\n",
|
1402 |
+
" <td>NaN</td>\n",
|
1403 |
+
" <td>NaN</td>\n",
|
1404 |
+
" <td>NaN</td>\n",
|
1405 |
+
" </tr>\n",
|
1406 |
+
" <tr>\n",
|
1407 |
+
" <th>Equatorial Guinea</th>\n",
|
1408 |
+
" <td>Africa</td>\n",
|
1409 |
+
" <td>NaN</td>\n",
|
1410 |
+
" <td>NaN</td>\n",
|
1411 |
+
" <td>NaN</td>\n",
|
1412 |
+
" <td>NaN</td>\n",
|
1413 |
+
" <td>NaN</td>\n",
|
1414 |
+
" <td>NaN</td>\n",
|
1415 |
+
" <td>NaN</td>\n",
|
1416 |
+
" <td>NaN</td>\n",
|
1417 |
+
" <td>NaN</td>\n",
|
1418 |
+
" <td>NaN</td>\n",
|
1419 |
+
" </tr>\n",
|
1420 |
+
" <tr>\n",
|
1421 |
+
" <th>Eritrea</th>\n",
|
1422 |
+
" <td>Africa</td>\n",
|
1423 |
+
" <td>NaN</td>\n",
|
1424 |
+
" <td>NaN</td>\n",
|
1425 |
+
" <td>NaN</td>\n",
|
1426 |
+
" <td>NaN</td>\n",
|
1427 |
+
" <td>NaN</td>\n",
|
1428 |
+
" <td>NaN</td>\n",
|
1429 |
+
" <td>NaN</td>\n",
|
1430 |
+
" <td>NaN</td>\n",
|
1431 |
+
" <td>NaN</td>\n",
|
1432 |
+
" <td>NaN</td>\n",
|
1433 |
+
" </tr>\n",
|
1434 |
+
" <tr>\n",
|
1435 |
+
" <th>Guinea-Bissau</th>\n",
|
1436 |
+
" <td>Africa</td>\n",
|
1437 |
+
" <td>NaN</td>\n",
|
1438 |
+
" <td>NaN</td>\n",
|
1439 |
+
" <td>NaN</td>\n",
|
1440 |
+
" <td>NaN</td>\n",
|
1441 |
+
" <td>NaN</td>\n",
|
1442 |
+
" <td>NaN</td>\n",
|
1443 |
+
" <td>NaN</td>\n",
|
1444 |
+
" <td>NaN</td>\n",
|
1445 |
+
" <td>NaN</td>\n",
|
1446 |
+
" <td>NaN</td>\n",
|
1447 |
+
" </tr>\n",
|
1448 |
+
" <tr>\n",
|
1449 |
+
" <th>Sao Tome and Principe</th>\n",
|
1450 |
+
" <td>Africa</td>\n",
|
1451 |
+
" <td>NaN</td>\n",
|
1452 |
+
" <td>NaN</td>\n",
|
1453 |
+
" <td>NaN</td>\n",
|
1454 |
+
" <td>NaN</td>\n",
|
1455 |
+
" <td>NaN</td>\n",
|
1456 |
+
" <td>NaN</td>\n",
|
1457 |
+
" <td>NaN</td>\n",
|
1458 |
+
" <td>NaN</td>\n",
|
1459 |
+
" <td>NaN</td>\n",
|
1460 |
+
" <td>NaN</td>\n",
|
1461 |
+
" </tr>\n",
|
1462 |
+
" <tr>\n",
|
1463 |
+
" <th>Seychelles</th>\n",
|
1464 |
+
" <td>Africa</td>\n",
|
1465 |
+
" <td>NaN</td>\n",
|
1466 |
+
" <td>NaN</td>\n",
|
1467 |
+
" <td>NaN</td>\n",
|
1468 |
+
" <td>NaN</td>\n",
|
1469 |
+
" <td>NaN</td>\n",
|
1470 |
+
" <td>NaN</td>\n",
|
1471 |
+
" <td>NaN</td>\n",
|
1472 |
+
" <td>NaN</td>\n",
|
1473 |
+
" <td>NaN</td>\n",
|
1474 |
+
" <td>NaN</td>\n",
|
1475 |
+
" </tr>\n",
|
1476 |
+
" <tr>\n",
|
1477 |
+
" <th>Brunei</th>\n",
|
1478 |
+
" <td>Asia</td>\n",
|
1479 |
+
" <td>NaN</td>\n",
|
1480 |
+
" <td>NaN</td>\n",
|
1481 |
+
" <td>NaN</td>\n",
|
1482 |
+
" <td>NaN</td>\n",
|
1483 |
+
" <td>NaN</td>\n",
|
1484 |
+
" <td>NaN</td>\n",
|
1485 |
+
" <td>NaN</td>\n",
|
1486 |
+
" <td>NaN</td>\n",
|
1487 |
+
" <td>NaN</td>\n",
|
1488 |
+
" <td>NaN</td>\n",
|
1489 |
+
" </tr>\n",
|
1490 |
+
" <tr>\n",
|
1491 |
+
" <th>Burma (Myanmar)</th>\n",
|
1492 |
+
" <td>Asia</td>\n",
|
1493 |
+
" <td>NaN</td>\n",
|
1494 |
+
" <td>NaN</td>\n",
|
1495 |
+
" <td>NaN</td>\n",
|
1496 |
+
" <td>NaN</td>\n",
|
1497 |
+
" <td>NaN</td>\n",
|
1498 |
+
" <td>NaN</td>\n",
|
1499 |
+
" <td>NaN</td>\n",
|
1500 |
+
" <td>NaN</td>\n",
|
1501 |
+
" <td>NaN</td>\n",
|
1502 |
+
" <td>NaN</td>\n",
|
1503 |
+
" </tr>\n",
|
1504 |
+
" <tr>\n",
|
1505 |
+
" <th>East Timor</th>\n",
|
1506 |
+
" <td>Asia</td>\n",
|
1507 |
+
" <td>NaN</td>\n",
|
1508 |
+
" <td>NaN</td>\n",
|
1509 |
+
" <td>NaN</td>\n",
|
1510 |
+
" <td>NaN</td>\n",
|
1511 |
+
" <td>NaN</td>\n",
|
1512 |
+
" <td>NaN</td>\n",
|
1513 |
+
" <td>NaN</td>\n",
|
1514 |
+
" <td>NaN</td>\n",
|
1515 |
+
" <td>NaN</td>\n",
|
1516 |
+
" <td>NaN</td>\n",
|
1517 |
+
" </tr>\n",
|
1518 |
+
" <tr>\n",
|
1519 |
+
" <th>Korea, North</th>\n",
|
1520 |
+
" <td>Asia</td>\n",
|
1521 |
+
" <td>NaN</td>\n",
|
1522 |
+
" <td>NaN</td>\n",
|
1523 |
+
" <td>NaN</td>\n",
|
1524 |
+
" <td>NaN</td>\n",
|
1525 |
+
" <td>NaN</td>\n",
|
1526 |
+
" <td>NaN</td>\n",
|
1527 |
+
" <td>NaN</td>\n",
|
1528 |
+
" <td>NaN</td>\n",
|
1529 |
+
" <td>NaN</td>\n",
|
1530 |
+
" <td>NaN</td>\n",
|
1531 |
+
" </tr>\n",
|
1532 |
+
" <tr>\n",
|
1533 |
+
" <th>Korea, South</th>\n",
|
1534 |
+
" <td>Asia</td>\n",
|
1535 |
+
" <td>NaN</td>\n",
|
1536 |
+
" <td>NaN</td>\n",
|
1537 |
+
" <td>NaN</td>\n",
|
1538 |
+
" <td>NaN</td>\n",
|
1539 |
+
" <td>NaN</td>\n",
|
1540 |
+
" <td>NaN</td>\n",
|
1541 |
+
" <td>NaN</td>\n",
|
1542 |
+
" <td>NaN</td>\n",
|
1543 |
+
" <td>NaN</td>\n",
|
1544 |
+
" <td>NaN</td>\n",
|
1545 |
+
" </tr>\n",
|
1546 |
+
" <tr>\n",
|
1547 |
+
" <th>Russian Federation</th>\n",
|
1548 |
+
" <td>Asia</td>\n",
|
1549 |
+
" <td>NaN</td>\n",
|
1550 |
+
" <td>NaN</td>\n",
|
1551 |
+
" <td>NaN</td>\n",
|
1552 |
+
" <td>NaN</td>\n",
|
1553 |
+
" <td>NaN</td>\n",
|
1554 |
+
" <td>NaN</td>\n",
|
1555 |
+
" <td>NaN</td>\n",
|
1556 |
+
" <td>NaN</td>\n",
|
1557 |
+
" <td>NaN</td>\n",
|
1558 |
+
" <td>NaN</td>\n",
|
1559 |
+
" </tr>\n",
|
1560 |
+
" <tr>\n",
|
1561 |
+
" <th>Andorra</th>\n",
|
1562 |
+
" <td>Europe</td>\n",
|
1563 |
+
" <td>NaN</td>\n",
|
1564 |
+
" <td>NaN</td>\n",
|
1565 |
+
" <td>NaN</td>\n",
|
1566 |
+
" <td>NaN</td>\n",
|
1567 |
+
" <td>NaN</td>\n",
|
1568 |
+
" <td>NaN</td>\n",
|
1569 |
+
" <td>NaN</td>\n",
|
1570 |
+
" <td>NaN</td>\n",
|
1571 |
+
" <td>NaN</td>\n",
|
1572 |
+
" <td>NaN</td>\n",
|
1573 |
+
" </tr>\n",
|
1574 |
+
" <tr>\n",
|
1575 |
+
" <th>CZ</th>\n",
|
1576 |
+
" <td>Europe</td>\n",
|
1577 |
+
" <td>NaN</td>\n",
|
1578 |
+
" <td>NaN</td>\n",
|
1579 |
+
" <td>NaN</td>\n",
|
1580 |
+
" <td>NaN</td>\n",
|
1581 |
+
" <td>NaN</td>\n",
|
1582 |
+
" <td>NaN</td>\n",
|
1583 |
+
" <td>NaN</td>\n",
|
1584 |
+
" <td>NaN</td>\n",
|
1585 |
+
" <td>NaN</td>\n",
|
1586 |
+
" <td>NaN</td>\n",
|
1587 |
+
" </tr>\n",
|
1588 |
+
" <tr>\n",
|
1589 |
+
" <th>Liechtenstein</th>\n",
|
1590 |
+
" <td>Europe</td>\n",
|
1591 |
+
" <td>NaN</td>\n",
|
1592 |
+
" <td>NaN</td>\n",
|
1593 |
+
" <td>NaN</td>\n",
|
1594 |
+
" <td>NaN</td>\n",
|
1595 |
+
" <td>NaN</td>\n",
|
1596 |
+
" <td>NaN</td>\n",
|
1597 |
+
" <td>NaN</td>\n",
|
1598 |
+
" <td>NaN</td>\n",
|
1599 |
+
" <td>NaN</td>\n",
|
1600 |
+
" <td>NaN</td>\n",
|
1601 |
+
" </tr>\n",
|
1602 |
+
" <tr>\n",
|
1603 |
+
" <th>Macedonia</th>\n",
|
1604 |
+
" <td>Europe</td>\n",
|
1605 |
+
" <td>NaN</td>\n",
|
1606 |
+
" <td>NaN</td>\n",
|
1607 |
+
" <td>NaN</td>\n",
|
1608 |
+
" <td>NaN</td>\n",
|
1609 |
+
" <td>NaN</td>\n",
|
1610 |
+
" <td>NaN</td>\n",
|
1611 |
+
" <td>NaN</td>\n",
|
1612 |
+
" <td>NaN</td>\n",
|
1613 |
+
" <td>NaN</td>\n",
|
1614 |
+
" <td>NaN</td>\n",
|
1615 |
+
" </tr>\n",
|
1616 |
+
" <tr>\n",
|
1617 |
+
" <th>Monaco</th>\n",
|
1618 |
+
" <td>Europe</td>\n",
|
1619 |
+
" <td>NaN</td>\n",
|
1620 |
+
" <td>NaN</td>\n",
|
1621 |
+
" <td>NaN</td>\n",
|
1622 |
+
" <td>NaN</td>\n",
|
1623 |
+
" <td>NaN</td>\n",
|
1624 |
+
" <td>NaN</td>\n",
|
1625 |
+
" <td>NaN</td>\n",
|
1626 |
+
" <td>NaN</td>\n",
|
1627 |
+
" <td>NaN</td>\n",
|
1628 |
+
" <td>NaN</td>\n",
|
1629 |
+
" </tr>\n",
|
1630 |
+
" <tr>\n",
|
1631 |
+
" <th>San Marino</th>\n",
|
1632 |
+
" <td>Europe</td>\n",
|
1633 |
+
" <td>NaN</td>\n",
|
1634 |
+
" <td>NaN</td>\n",
|
1635 |
+
" <td>NaN</td>\n",
|
1636 |
+
" <td>NaN</td>\n",
|
1637 |
+
" <td>NaN</td>\n",
|
1638 |
+
" <td>NaN</td>\n",
|
1639 |
+
" <td>NaN</td>\n",
|
1640 |
+
" <td>NaN</td>\n",
|
1641 |
+
" <td>NaN</td>\n",
|
1642 |
+
" <td>NaN</td>\n",
|
1643 |
+
" </tr>\n",
|
1644 |
+
" <tr>\n",
|
1645 |
+
" <th>Vatican City</th>\n",
|
1646 |
+
" <td>Europe</td>\n",
|
1647 |
+
" <td>NaN</td>\n",
|
1648 |
+
" <td>NaN</td>\n",
|
1649 |
+
" <td>NaN</td>\n",
|
1650 |
+
" <td>NaN</td>\n",
|
1651 |
+
" <td>NaN</td>\n",
|
1652 |
+
" <td>NaN</td>\n",
|
1653 |
+
" <td>NaN</td>\n",
|
1654 |
+
" <td>NaN</td>\n",
|
1655 |
+
" <td>NaN</td>\n",
|
1656 |
+
" <td>NaN</td>\n",
|
1657 |
+
" </tr>\n",
|
1658 |
+
" <tr>\n",
|
1659 |
+
" <th>Antigua and Barbuda</th>\n",
|
1660 |
+
" <td>North America</td>\n",
|
1661 |
+
" <td>NaN</td>\n",
|
1662 |
+
" <td>NaN</td>\n",
|
1663 |
+
" <td>NaN</td>\n",
|
1664 |
+
" <td>NaN</td>\n",
|
1665 |
+
" <td>NaN</td>\n",
|
1666 |
+
" <td>NaN</td>\n",
|
1667 |
+
" <td>NaN</td>\n",
|
1668 |
+
" <td>NaN</td>\n",
|
1669 |
+
" <td>NaN</td>\n",
|
1670 |
+
" <td>NaN</td>\n",
|
1671 |
+
" </tr>\n",
|
1672 |
+
" <tr>\n",
|
1673 |
+
" <th>Bahamas</th>\n",
|
1674 |
+
" <td>North America</td>\n",
|
1675 |
+
" <td>NaN</td>\n",
|
1676 |
+
" <td>NaN</td>\n",
|
1677 |
+
" <td>NaN</td>\n",
|
1678 |
+
" <td>NaN</td>\n",
|
1679 |
+
" <td>NaN</td>\n",
|
1680 |
+
" <td>NaN</td>\n",
|
1681 |
+
" <td>NaN</td>\n",
|
1682 |
+
" <td>NaN</td>\n",
|
1683 |
+
" <td>NaN</td>\n",
|
1684 |
+
" <td>NaN</td>\n",
|
1685 |
+
" </tr>\n",
|
1686 |
+
" <tr>\n",
|
1687 |
+
" <th>Barbados</th>\n",
|
1688 |
+
" <td>North America</td>\n",
|
1689 |
+
" <td>NaN</td>\n",
|
1690 |
+
" <td>NaN</td>\n",
|
1691 |
+
" <td>NaN</td>\n",
|
1692 |
+
" <td>NaN</td>\n",
|
1693 |
+
" <td>NaN</td>\n",
|
1694 |
+
" <td>NaN</td>\n",
|
1695 |
+
" <td>NaN</td>\n",
|
1696 |
+
" <td>NaN</td>\n",
|
1697 |
+
" <td>NaN</td>\n",
|
1698 |
+
" <td>NaN</td>\n",
|
1699 |
+
" </tr>\n",
|
1700 |
+
" <tr>\n",
|
1701 |
+
" <th>Dominica</th>\n",
|
1702 |
+
" <td>North America</td>\n",
|
1703 |
+
" <td>NaN</td>\n",
|
1704 |
+
" <td>NaN</td>\n",
|
1705 |
+
" <td>NaN</td>\n",
|
1706 |
+
" <td>NaN</td>\n",
|
1707 |
+
" <td>NaN</td>\n",
|
1708 |
+
" <td>NaN</td>\n",
|
1709 |
+
" <td>NaN</td>\n",
|
1710 |
+
" <td>NaN</td>\n",
|
1711 |
+
" <td>NaN</td>\n",
|
1712 |
+
" <td>NaN</td>\n",
|
1713 |
+
" </tr>\n",
|
1714 |
+
" <tr>\n",
|
1715 |
+
" <th>Grenada</th>\n",
|
1716 |
+
" <td>North America</td>\n",
|
1717 |
+
" <td>NaN</td>\n",
|
1718 |
+
" <td>NaN</td>\n",
|
1719 |
+
" <td>NaN</td>\n",
|
1720 |
+
" <td>NaN</td>\n",
|
1721 |
+
" <td>NaN</td>\n",
|
1722 |
+
" <td>NaN</td>\n",
|
1723 |
+
" <td>NaN</td>\n",
|
1724 |
+
" <td>NaN</td>\n",
|
1725 |
+
" <td>NaN</td>\n",
|
1726 |
+
" <td>NaN</td>\n",
|
1727 |
+
" </tr>\n",
|
1728 |
+
" <tr>\n",
|
1729 |
+
" <th>Saint Kitts and Nevis</th>\n",
|
1730 |
+
" <td>North America</td>\n",
|
1731 |
+
" <td>NaN</td>\n",
|
1732 |
+
" <td>NaN</td>\n",
|
1733 |
+
" <td>NaN</td>\n",
|
1734 |
+
" <td>NaN</td>\n",
|
1735 |
+
" <td>NaN</td>\n",
|
1736 |
+
" <td>NaN</td>\n",
|
1737 |
+
" <td>NaN</td>\n",
|
1738 |
+
" <td>NaN</td>\n",
|
1739 |
+
" <td>NaN</td>\n",
|
1740 |
+
" <td>NaN</td>\n",
|
1741 |
+
" </tr>\n",
|
1742 |
+
" <tr>\n",
|
1743 |
+
" <th>Saint Lucia</th>\n",
|
1744 |
+
" <td>North America</td>\n",
|
1745 |
+
" <td>NaN</td>\n",
|
1746 |
+
" <td>NaN</td>\n",
|
1747 |
+
" <td>NaN</td>\n",
|
1748 |
+
" <td>NaN</td>\n",
|
1749 |
+
" <td>NaN</td>\n",
|
1750 |
+
" <td>NaN</td>\n",
|
1751 |
+
" <td>NaN</td>\n",
|
1752 |
+
" <td>NaN</td>\n",
|
1753 |
+
" <td>NaN</td>\n",
|
1754 |
+
" <td>NaN</td>\n",
|
1755 |
+
" </tr>\n",
|
1756 |
+
" <tr>\n",
|
1757 |
+
" <th>Saint Vincent and the Grenadines</th>\n",
|
1758 |
+
" <td>North America</td>\n",
|
1759 |
+
" <td>NaN</td>\n",
|
1760 |
+
" <td>NaN</td>\n",
|
1761 |
+
" <td>NaN</td>\n",
|
1762 |
+
" <td>NaN</td>\n",
|
1763 |
+
" <td>NaN</td>\n",
|
1764 |
+
" <td>NaN</td>\n",
|
1765 |
+
" <td>NaN</td>\n",
|
1766 |
+
" <td>NaN</td>\n",
|
1767 |
+
" <td>NaN</td>\n",
|
1768 |
+
" <td>NaN</td>\n",
|
1769 |
+
" </tr>\n",
|
1770 |
+
" <tr>\n",
|
1771 |
+
" <th>US</th>\n",
|
1772 |
+
" <td>North America</td>\n",
|
1773 |
+
" <td>NaN</td>\n",
|
1774 |
+
" <td>NaN</td>\n",
|
1775 |
+
" <td>NaN</td>\n",
|
1776 |
+
" <td>NaN</td>\n",
|
1777 |
+
" <td>NaN</td>\n",
|
1778 |
+
" <td>NaN</td>\n",
|
1779 |
+
" <td>NaN</td>\n",
|
1780 |
+
" <td>NaN</td>\n",
|
1781 |
+
" <td>NaN</td>\n",
|
1782 |
+
" <td>NaN</td>\n",
|
1783 |
+
" </tr>\n",
|
1784 |
+
" <tr>\n",
|
1785 |
+
" <th>Fiji</th>\n",
|
1786 |
+
" <td>Oceania</td>\n",
|
1787 |
+
" <td>NaN</td>\n",
|
1788 |
+
" <td>NaN</td>\n",
|
1789 |
+
" <td>NaN</td>\n",
|
1790 |
+
" <td>NaN</td>\n",
|
1791 |
+
" <td>NaN</td>\n",
|
1792 |
+
" <td>NaN</td>\n",
|
1793 |
+
" <td>NaN</td>\n",
|
1794 |
+
" <td>NaN</td>\n",
|
1795 |
+
" <td>NaN</td>\n",
|
1796 |
+
" <td>NaN</td>\n",
|
1797 |
+
" </tr>\n",
|
1798 |
+
" <tr>\n",
|
1799 |
+
" <th>Kiribati</th>\n",
|
1800 |
+
" <td>Oceania</td>\n",
|
1801 |
+
" <td>NaN</td>\n",
|
1802 |
+
" <td>NaN</td>\n",
|
1803 |
+
" <td>NaN</td>\n",
|
1804 |
+
" <td>NaN</td>\n",
|
1805 |
+
" <td>NaN</td>\n",
|
1806 |
+
" <td>NaN</td>\n",
|
1807 |
+
" <td>NaN</td>\n",
|
1808 |
+
" <td>NaN</td>\n",
|
1809 |
+
" <td>NaN</td>\n",
|
1810 |
+
" <td>NaN</td>\n",
|
1811 |
+
" </tr>\n",
|
1812 |
+
" <tr>\n",
|
1813 |
+
" <th>Marshall Islands</th>\n",
|
1814 |
+
" <td>Oceania</td>\n",
|
1815 |
+
" <td>NaN</td>\n",
|
1816 |
+
" <td>NaN</td>\n",
|
1817 |
+
" <td>NaN</td>\n",
|
1818 |
+
" <td>NaN</td>\n",
|
1819 |
+
" <td>NaN</td>\n",
|
1820 |
+
" <td>NaN</td>\n",
|
1821 |
+
" <td>NaN</td>\n",
|
1822 |
+
" <td>NaN</td>\n",
|
1823 |
+
" <td>NaN</td>\n",
|
1824 |
+
" <td>NaN</td>\n",
|
1825 |
+
" </tr>\n",
|
1826 |
+
" <tr>\n",
|
1827 |
+
" <th>Micronesia</th>\n",
|
1828 |
+
" <td>Oceania</td>\n",
|
1829 |
+
" <td>NaN</td>\n",
|
1830 |
+
" <td>NaN</td>\n",
|
1831 |
+
" <td>NaN</td>\n",
|
1832 |
+
" <td>NaN</td>\n",
|
1833 |
+
" <td>NaN</td>\n",
|
1834 |
+
" <td>NaN</td>\n",
|
1835 |
+
" <td>NaN</td>\n",
|
1836 |
+
" <td>NaN</td>\n",
|
1837 |
+
" <td>NaN</td>\n",
|
1838 |
+
" <td>NaN</td>\n",
|
1839 |
+
" </tr>\n",
|
1840 |
+
" <tr>\n",
|
1841 |
+
" <th>Nauru</th>\n",
|
1842 |
+
" <td>Oceania</td>\n",
|
1843 |
+
" <td>NaN</td>\n",
|
1844 |
+
" <td>NaN</td>\n",
|
1845 |
+
" <td>NaN</td>\n",
|
1846 |
+
" <td>NaN</td>\n",
|
1847 |
+
" <td>NaN</td>\n",
|
1848 |
+
" <td>NaN</td>\n",
|
1849 |
+
" <td>NaN</td>\n",
|
1850 |
+
" <td>NaN</td>\n",
|
1851 |
+
" <td>NaN</td>\n",
|
1852 |
+
" <td>NaN</td>\n",
|
1853 |
+
" </tr>\n",
|
1854 |
+
" <tr>\n",
|
1855 |
+
" <th>Palau</th>\n",
|
1856 |
+
" <td>Oceania</td>\n",
|
1857 |
+
" <td>NaN</td>\n",
|
1858 |
+
" <td>NaN</td>\n",
|
1859 |
+
" <td>NaN</td>\n",
|
1860 |
+
" <td>NaN</td>\n",
|
1861 |
+
" <td>NaN</td>\n",
|
1862 |
+
" <td>NaN</td>\n",
|
1863 |
+
" <td>NaN</td>\n",
|
1864 |
+
" <td>NaN</td>\n",
|
1865 |
+
" <td>NaN</td>\n",
|
1866 |
+
" <td>NaN</td>\n",
|
1867 |
+
" </tr>\n",
|
1868 |
+
" <tr>\n",
|
1869 |
+
" <th>Papua New Guinea</th>\n",
|
1870 |
+
" <td>Oceania</td>\n",
|
1871 |
+
" <td>NaN</td>\n",
|
1872 |
+
" <td>NaN</td>\n",
|
1873 |
+
" <td>NaN</td>\n",
|
1874 |
+
" <td>NaN</td>\n",
|
1875 |
+
" <td>NaN</td>\n",
|
1876 |
+
" <td>NaN</td>\n",
|
1877 |
+
" <td>NaN</td>\n",
|
1878 |
+
" <td>NaN</td>\n",
|
1879 |
+
" <td>NaN</td>\n",
|
1880 |
+
" <td>NaN</td>\n",
|
1881 |
+
" </tr>\n",
|
1882 |
+
" <tr>\n",
|
1883 |
+
" <th>Samoa</th>\n",
|
1884 |
+
" <td>Oceania</td>\n",
|
1885 |
+
" <td>NaN</td>\n",
|
1886 |
+
" <td>NaN</td>\n",
|
1887 |
+
" <td>NaN</td>\n",
|
1888 |
+
" <td>NaN</td>\n",
|
1889 |
+
" <td>NaN</td>\n",
|
1890 |
+
" <td>NaN</td>\n",
|
1891 |
+
" <td>NaN</td>\n",
|
1892 |
+
" <td>NaN</td>\n",
|
1893 |
+
" <td>NaN</td>\n",
|
1894 |
+
" <td>NaN</td>\n",
|
1895 |
+
" </tr>\n",
|
1896 |
+
" <tr>\n",
|
1897 |
+
" <th>Solomon Islands</th>\n",
|
1898 |
+
" <td>Oceania</td>\n",
|
1899 |
+
" <td>NaN</td>\n",
|
1900 |
+
" <td>NaN</td>\n",
|
1901 |
+
" <td>NaN</td>\n",
|
1902 |
+
" <td>NaN</td>\n",
|
1903 |
+
" <td>NaN</td>\n",
|
1904 |
+
" <td>NaN</td>\n",
|
1905 |
+
" <td>NaN</td>\n",
|
1906 |
+
" <td>NaN</td>\n",
|
1907 |
+
" <td>NaN</td>\n",
|
1908 |
+
" <td>NaN</td>\n",
|
1909 |
+
" </tr>\n",
|
1910 |
+
" <tr>\n",
|
1911 |
+
" <th>Tonga</th>\n",
|
1912 |
+
" <td>Oceania</td>\n",
|
1913 |
+
" <td>NaN</td>\n",
|
1914 |
+
" <td>NaN</td>\n",
|
1915 |
+
" <td>NaN</td>\n",
|
1916 |
+
" <td>NaN</td>\n",
|
1917 |
+
" <td>NaN</td>\n",
|
1918 |
+
" <td>NaN</td>\n",
|
1919 |
+
" <td>NaN</td>\n",
|
1920 |
+
" <td>NaN</td>\n",
|
1921 |
+
" <td>NaN</td>\n",
|
1922 |
+
" <td>NaN</td>\n",
|
1923 |
+
" </tr>\n",
|
1924 |
+
" <tr>\n",
|
1925 |
+
" <th>Tuvalu</th>\n",
|
1926 |
+
" <td>Oceania</td>\n",
|
1927 |
+
" <td>NaN</td>\n",
|
1928 |
+
" <td>NaN</td>\n",
|
1929 |
+
" <td>NaN</td>\n",
|
1930 |
+
" <td>NaN</td>\n",
|
1931 |
+
" <td>NaN</td>\n",
|
1932 |
+
" <td>NaN</td>\n",
|
1933 |
+
" <td>NaN</td>\n",
|
1934 |
+
" <td>NaN</td>\n",
|
1935 |
+
" <td>NaN</td>\n",
|
1936 |
+
" <td>NaN</td>\n",
|
1937 |
+
" </tr>\n",
|
1938 |
+
" <tr>\n",
|
1939 |
+
" <th>Vanuatu</th>\n",
|
1940 |
+
" <td>Oceania</td>\n",
|
1941 |
+
" <td>NaN</td>\n",
|
1942 |
+
" <td>NaN</td>\n",
|
1943 |
+
" <td>NaN</td>\n",
|
1944 |
+
" <td>NaN</td>\n",
|
1945 |
+
" <td>NaN</td>\n",
|
1946 |
+
" <td>NaN</td>\n",
|
1947 |
+
" <td>NaN</td>\n",
|
1948 |
+
" <td>NaN</td>\n",
|
1949 |
+
" <td>NaN</td>\n",
|
1950 |
+
" <td>NaN</td>\n",
|
1951 |
+
" </tr>\n",
|
1952 |
+
" </tbody>\n",
|
1953 |
+
"</table>\n",
|
1954 |
+
"</div>"
|
1955 |
+
],
|
1956 |
+
"text/plain": [
|
1957 |
+
" Continent year Life Ladder \\\n",
|
1958 |
+
"Country \n",
|
1959 |
+
"Burkina Africa NaN NaN \n",
|
1960 |
+
"Cape Verde Africa NaN NaN \n",
|
1961 |
+
"Congo Africa NaN NaN \n",
|
1962 |
+
"Congo, Democratic Republic of Africa NaN NaN \n",
|
1963 |
+
"Equatorial Guinea Africa NaN NaN \n",
|
1964 |
+
"Eritrea Africa NaN NaN \n",
|
1965 |
+
"Guinea-Bissau Africa NaN NaN \n",
|
1966 |
+
"Sao Tome and Principe Africa NaN NaN \n",
|
1967 |
+
"Seychelles Africa NaN NaN \n",
|
1968 |
+
"Brunei Asia NaN NaN \n",
|
1969 |
+
"Burma (Myanmar) Asia NaN NaN \n",
|
1970 |
+
"East Timor Asia NaN NaN \n",
|
1971 |
+
"Korea, North Asia NaN NaN \n",
|
1972 |
+
"Korea, South Asia NaN NaN \n",
|
1973 |
+
"Russian Federation Asia NaN NaN \n",
|
1974 |
+
"Andorra Europe NaN NaN \n",
|
1975 |
+
"CZ Europe NaN NaN \n",
|
1976 |
+
"Liechtenstein Europe NaN NaN \n",
|
1977 |
+
"Macedonia Europe NaN NaN \n",
|
1978 |
+
"Monaco Europe NaN NaN \n",
|
1979 |
+
"San Marino Europe NaN NaN \n",
|
1980 |
+
"Vatican City Europe NaN NaN \n",
|
1981 |
+
"Antigua and Barbuda North America NaN NaN \n",
|
1982 |
+
"Bahamas North America NaN NaN \n",
|
1983 |
+
"Barbados North America NaN NaN \n",
|
1984 |
+
"Dominica North America NaN NaN \n",
|
1985 |
+
"Grenada North America NaN NaN \n",
|
1986 |
+
"Saint Kitts and Nevis North America NaN NaN \n",
|
1987 |
+
"Saint Lucia North America NaN NaN \n",
|
1988 |
+
"Saint Vincent and the Grenadines North America NaN NaN \n",
|
1989 |
+
"US North America NaN NaN \n",
|
1990 |
+
"Fiji Oceania NaN NaN \n",
|
1991 |
+
"Kiribati Oceania NaN NaN \n",
|
1992 |
+
"Marshall Islands Oceania NaN NaN \n",
|
1993 |
+
"Micronesia Oceania NaN NaN \n",
|
1994 |
+
"Nauru Oceania NaN NaN \n",
|
1995 |
+
"Palau Oceania NaN NaN \n",
|
1996 |
+
"Papua New Guinea Oceania NaN NaN \n",
|
1997 |
+
"Samoa Oceania NaN NaN \n",
|
1998 |
+
"Solomon Islands Oceania NaN NaN \n",
|
1999 |
+
"Tonga Oceania NaN NaN \n",
|
2000 |
+
"Tuvalu Oceania NaN NaN \n",
|
2001 |
+
"Vanuatu Oceania NaN NaN \n",
|
2002 |
+
"\n",
|
2003 |
+
" Log GDP per capita Social support \\\n",
|
2004 |
+
"Country \n",
|
2005 |
+
"Burkina NaN NaN \n",
|
2006 |
+
"Cape Verde NaN NaN \n",
|
2007 |
+
"Congo NaN NaN \n",
|
2008 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2009 |
+
"Equatorial Guinea NaN NaN \n",
|
2010 |
+
"Eritrea NaN NaN \n",
|
2011 |
+
"Guinea-Bissau NaN NaN \n",
|
2012 |
+
"Sao Tome and Principe NaN NaN \n",
|
2013 |
+
"Seychelles NaN NaN \n",
|
2014 |
+
"Brunei NaN NaN \n",
|
2015 |
+
"Burma (Myanmar) NaN NaN \n",
|
2016 |
+
"East Timor NaN NaN \n",
|
2017 |
+
"Korea, North NaN NaN \n",
|
2018 |
+
"Korea, South NaN NaN \n",
|
2019 |
+
"Russian Federation NaN NaN \n",
|
2020 |
+
"Andorra NaN NaN \n",
|
2021 |
+
"CZ NaN NaN \n",
|
2022 |
+
"Liechtenstein NaN NaN \n",
|
2023 |
+
"Macedonia NaN NaN \n",
|
2024 |
+
"Monaco NaN NaN \n",
|
2025 |
+
"San Marino NaN NaN \n",
|
2026 |
+
"Vatican City NaN NaN \n",
|
2027 |
+
"Antigua and Barbuda NaN NaN \n",
|
2028 |
+
"Bahamas NaN NaN \n",
|
2029 |
+
"Barbados NaN NaN \n",
|
2030 |
+
"Dominica NaN NaN \n",
|
2031 |
+
"Grenada NaN NaN \n",
|
2032 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2033 |
+
"Saint Lucia NaN NaN \n",
|
2034 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2035 |
+
"US NaN NaN \n",
|
2036 |
+
"Fiji NaN NaN \n",
|
2037 |
+
"Kiribati NaN NaN \n",
|
2038 |
+
"Marshall Islands NaN NaN \n",
|
2039 |
+
"Micronesia NaN NaN \n",
|
2040 |
+
"Nauru NaN NaN \n",
|
2041 |
+
"Palau NaN NaN \n",
|
2042 |
+
"Papua New Guinea NaN NaN \n",
|
2043 |
+
"Samoa NaN NaN \n",
|
2044 |
+
"Solomon Islands NaN NaN \n",
|
2045 |
+
"Tonga NaN NaN \n",
|
2046 |
+
"Tuvalu NaN NaN \n",
|
2047 |
+
"Vanuatu NaN NaN \n",
|
2048 |
+
"\n",
|
2049 |
+
" Healthy life expectancy at birth \\\n",
|
2050 |
+
"Country \n",
|
2051 |
+
"Burkina NaN \n",
|
2052 |
+
"Cape Verde NaN \n",
|
2053 |
+
"Congo NaN \n",
|
2054 |
+
"Congo, Democratic Republic of NaN \n",
|
2055 |
+
"Equatorial Guinea NaN \n",
|
2056 |
+
"Eritrea NaN \n",
|
2057 |
+
"Guinea-Bissau NaN \n",
|
2058 |
+
"Sao Tome and Principe NaN \n",
|
2059 |
+
"Seychelles NaN \n",
|
2060 |
+
"Brunei NaN \n",
|
2061 |
+
"Burma (Myanmar) NaN \n",
|
2062 |
+
"East Timor NaN \n",
|
2063 |
+
"Korea, North NaN \n",
|
2064 |
+
"Korea, South NaN \n",
|
2065 |
+
"Russian Federation NaN \n",
|
2066 |
+
"Andorra NaN \n",
|
2067 |
+
"CZ NaN \n",
|
2068 |
+
"Liechtenstein NaN \n",
|
2069 |
+
"Macedonia NaN \n",
|
2070 |
+
"Monaco NaN \n",
|
2071 |
+
"San Marino NaN \n",
|
2072 |
+
"Vatican City NaN \n",
|
2073 |
+
"Antigua and Barbuda NaN \n",
|
2074 |
+
"Bahamas NaN \n",
|
2075 |
+
"Barbados NaN \n",
|
2076 |
+
"Dominica NaN \n",
|
2077 |
+
"Grenada NaN \n",
|
2078 |
+
"Saint Kitts and Nevis NaN \n",
|
2079 |
+
"Saint Lucia NaN \n",
|
2080 |
+
"Saint Vincent and the Grenadines NaN \n",
|
2081 |
+
"US NaN \n",
|
2082 |
+
"Fiji NaN \n",
|
2083 |
+
"Kiribati NaN \n",
|
2084 |
+
"Marshall Islands NaN \n",
|
2085 |
+
"Micronesia NaN \n",
|
2086 |
+
"Nauru NaN \n",
|
2087 |
+
"Palau NaN \n",
|
2088 |
+
"Papua New Guinea NaN \n",
|
2089 |
+
"Samoa NaN \n",
|
2090 |
+
"Solomon Islands NaN \n",
|
2091 |
+
"Tonga NaN \n",
|
2092 |
+
"Tuvalu NaN \n",
|
2093 |
+
"Vanuatu NaN \n",
|
2094 |
+
"\n",
|
2095 |
+
" Freedom to make life choices Generosity \\\n",
|
2096 |
+
"Country \n",
|
2097 |
+
"Burkina NaN NaN \n",
|
2098 |
+
"Cape Verde NaN NaN \n",
|
2099 |
+
"Congo NaN NaN \n",
|
2100 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2101 |
+
"Equatorial Guinea NaN NaN \n",
|
2102 |
+
"Eritrea NaN NaN \n",
|
2103 |
+
"Guinea-Bissau NaN NaN \n",
|
2104 |
+
"Sao Tome and Principe NaN NaN \n",
|
2105 |
+
"Seychelles NaN NaN \n",
|
2106 |
+
"Brunei NaN NaN \n",
|
2107 |
+
"Burma (Myanmar) NaN NaN \n",
|
2108 |
+
"East Timor NaN NaN \n",
|
2109 |
+
"Korea, North NaN NaN \n",
|
2110 |
+
"Korea, South NaN NaN \n",
|
2111 |
+
"Russian Federation NaN NaN \n",
|
2112 |
+
"Andorra NaN NaN \n",
|
2113 |
+
"CZ NaN NaN \n",
|
2114 |
+
"Liechtenstein NaN NaN \n",
|
2115 |
+
"Macedonia NaN NaN \n",
|
2116 |
+
"Monaco NaN NaN \n",
|
2117 |
+
"San Marino NaN NaN \n",
|
2118 |
+
"Vatican City NaN NaN \n",
|
2119 |
+
"Antigua and Barbuda NaN NaN \n",
|
2120 |
+
"Bahamas NaN NaN \n",
|
2121 |
+
"Barbados NaN NaN \n",
|
2122 |
+
"Dominica NaN NaN \n",
|
2123 |
+
"Grenada NaN NaN \n",
|
2124 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2125 |
+
"Saint Lucia NaN NaN \n",
|
2126 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2127 |
+
"US NaN NaN \n",
|
2128 |
+
"Fiji NaN NaN \n",
|
2129 |
+
"Kiribati NaN NaN \n",
|
2130 |
+
"Marshall Islands NaN NaN \n",
|
2131 |
+
"Micronesia NaN NaN \n",
|
2132 |
+
"Nauru NaN NaN \n",
|
2133 |
+
"Palau NaN NaN \n",
|
2134 |
+
"Papua New Guinea NaN NaN \n",
|
2135 |
+
"Samoa NaN NaN \n",
|
2136 |
+
"Solomon Islands NaN NaN \n",
|
2137 |
+
"Tonga NaN NaN \n",
|
2138 |
+
"Tuvalu NaN NaN \n",
|
2139 |
+
"Vanuatu NaN NaN \n",
|
2140 |
+
"\n",
|
2141 |
+
" Perceptions of corruption Positive affect \\\n",
|
2142 |
+
"Country \n",
|
2143 |
+
"Burkina NaN NaN \n",
|
2144 |
+
"Cape Verde NaN NaN \n",
|
2145 |
+
"Congo NaN NaN \n",
|
2146 |
+
"Congo, Democratic Republic of NaN NaN \n",
|
2147 |
+
"Equatorial Guinea NaN NaN \n",
|
2148 |
+
"Eritrea NaN NaN \n",
|
2149 |
+
"Guinea-Bissau NaN NaN \n",
|
2150 |
+
"Sao Tome and Principe NaN NaN \n",
|
2151 |
+
"Seychelles NaN NaN \n",
|
2152 |
+
"Brunei NaN NaN \n",
|
2153 |
+
"Burma (Myanmar) NaN NaN \n",
|
2154 |
+
"East Timor NaN NaN \n",
|
2155 |
+
"Korea, North NaN NaN \n",
|
2156 |
+
"Korea, South NaN NaN \n",
|
2157 |
+
"Russian Federation NaN NaN \n",
|
2158 |
+
"Andorra NaN NaN \n",
|
2159 |
+
"CZ NaN NaN \n",
|
2160 |
+
"Liechtenstein NaN NaN \n",
|
2161 |
+
"Macedonia NaN NaN \n",
|
2162 |
+
"Monaco NaN NaN \n",
|
2163 |
+
"San Marino NaN NaN \n",
|
2164 |
+
"Vatican City NaN NaN \n",
|
2165 |
+
"Antigua and Barbuda NaN NaN \n",
|
2166 |
+
"Bahamas NaN NaN \n",
|
2167 |
+
"Barbados NaN NaN \n",
|
2168 |
+
"Dominica NaN NaN \n",
|
2169 |
+
"Grenada NaN NaN \n",
|
2170 |
+
"Saint Kitts and Nevis NaN NaN \n",
|
2171 |
+
"Saint Lucia NaN NaN \n",
|
2172 |
+
"Saint Vincent and the Grenadines NaN NaN \n",
|
2173 |
+
"US NaN NaN \n",
|
2174 |
+
"Fiji NaN NaN \n",
|
2175 |
+
"Kiribati NaN NaN \n",
|
2176 |
+
"Marshall Islands NaN NaN \n",
|
2177 |
+
"Micronesia NaN NaN \n",
|
2178 |
+
"Nauru NaN NaN \n",
|
2179 |
+
"Palau NaN NaN \n",
|
2180 |
+
"Papua New Guinea NaN NaN \n",
|
2181 |
+
"Samoa NaN NaN \n",
|
2182 |
+
"Solomon Islands NaN NaN \n",
|
2183 |
+
"Tonga NaN NaN \n",
|
2184 |
+
"Tuvalu NaN NaN \n",
|
2185 |
+
"Vanuatu NaN NaN \n",
|
2186 |
+
"\n",
|
2187 |
+
" Negative affect \n",
|
2188 |
+
"Country \n",
|
2189 |
+
"Burkina NaN \n",
|
2190 |
+
"Cape Verde NaN \n",
|
2191 |
+
"Congo NaN \n",
|
2192 |
+
"Congo, Democratic Republic of NaN \n",
|
2193 |
+
"Equatorial Guinea NaN \n",
|
2194 |
+
"Eritrea NaN \n",
|
2195 |
+
"Guinea-Bissau NaN \n",
|
2196 |
+
"Sao Tome and Principe NaN \n",
|
2197 |
+
"Seychelles NaN \n",
|
2198 |
+
"Brunei NaN \n",
|
2199 |
+
"Burma (Myanmar) NaN \n",
|
2200 |
+
"East Timor NaN \n",
|
2201 |
+
"Korea, North NaN \n",
|
2202 |
+
"Korea, South NaN \n",
|
2203 |
+
"Russian Federation NaN \n",
|
2204 |
+
"Andorra NaN \n",
|
2205 |
+
"CZ NaN \n",
|
2206 |
+
"Liechtenstein NaN \n",
|
2207 |
+
"Macedonia NaN \n",
|
2208 |
+
"Monaco NaN \n",
|
2209 |
+
"San Marino NaN \n",
|
2210 |
+
"Vatican City NaN \n",
|
2211 |
+
"Antigua and Barbuda NaN \n",
|
2212 |
+
"Bahamas NaN \n",
|
2213 |
+
"Barbados NaN \n",
|
2214 |
+
"Dominica NaN \n",
|
2215 |
+
"Grenada NaN \n",
|
2216 |
+
"Saint Kitts and Nevis NaN \n",
|
2217 |
+
"Saint Lucia NaN \n",
|
2218 |
+
"Saint Vincent and the Grenadines NaN \n",
|
2219 |
+
"US NaN \n",
|
2220 |
+
"Fiji NaN \n",
|
2221 |
+
"Kiribati NaN \n",
|
2222 |
+
"Marshall Islands NaN \n",
|
2223 |
+
"Micronesia NaN \n",
|
2224 |
+
"Nauru NaN \n",
|
2225 |
+
"Palau NaN \n",
|
2226 |
+
"Papua New Guinea NaN \n",
|
2227 |
+
"Samoa NaN \n",
|
2228 |
+
"Solomon Islands NaN \n",
|
2229 |
+
"Tonga NaN \n",
|
2230 |
+
"Tuvalu NaN \n",
|
2231 |
+
"Vanuatu NaN "
|
2232 |
+
]
|
2233 |
+
},
|
2234 |
+
"execution_count": 88,
|
2235 |
+
"metadata": {},
|
2236 |
+
"output_type": "execute_result"
|
2237 |
+
}
|
2238 |
+
],
|
2239 |
+
"source": [
|
2240 |
+
"df3"
|
2241 |
+
]
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"cell_type": "markdown",
|
2245 |
+
"id": "db01b828-d1b1-4708-b6bd-3b2dbed54746",
|
2246 |
+
"metadata": {},
|
2247 |
+
"source": [
|
2248 |
+
"> Note that I updated these in the spreadsheet manually with Excel because it was faster to do it by hand... I should go back when I have time to do it programmatically..."
|
2249 |
+
]
|
2250 |
+
}
|
2251 |
+
],
|
2252 |
+
"metadata": {
|
2253 |
+
"kernelspec": {
|
2254 |
+
"display_name": "Python 3 (ipykernel)",
|
2255 |
+
"language": "python",
|
2256 |
+
"name": "python3"
|
2257 |
+
},
|
2258 |
+
"language_info": {
|
2259 |
+
"codemirror_mode": {
|
2260 |
+
"name": "ipython",
|
2261 |
+
"version": 3
|
2262 |
+
},
|
2263 |
+
"file_extension": ".py",
|
2264 |
+
"mimetype": "text/x-python",
|
2265 |
+
"name": "python",
|
2266 |
+
"nbconvert_exporter": "python",
|
2267 |
+
"pygments_lexer": "ipython3",
|
2268 |
+
"version": "3.8.8"
|
2269 |
+
}
|
2270 |
+
},
|
2271 |
+
"nbformat": 4,
|
2272 |
+
"nbformat_minor": 5
|
2273 |
+
}
|
Assets/Countries/combined-countries.csv
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Words,year,Life Ladder,Log GDP per capita,Social support,Healthy life expectancy at birth,Freedom to make life choices,Generosity,Perceptions of corruption,Positive affect,Negative affect,Categories
|
2 |
+
Afghanistan,2019,2.375091791,7.697247982,0.419972867,52.40000153,0.393656164,-0.108458869,0.923849106,0.351387054,0.502473712,Asia
|
3 |
+
Albania,2020,5.364909649,9.497251511,0.710115016,69.30000305,0.75367105,0.006968025,0.891358972,0.678661227,0.265066117,Europe
|
4 |
+
Algeria,2019,4.744627476,9.336946487,0.803258657,66.09999847,0.385083437,0.00508652,0.740609348,0.584944308,0.215197757,Africa
|
5 |
+
Andorra,,,,,,,,,,,Europe
|
6 |
+
Angola,2014,3.794837952,9.016735077,0.754615486,54.59999847,0.374541551,-0.167722687,0.83407563,0.578517139,0.367864132,Africa
|
7 |
+
Antigua and Barbuda,,,,,,,,,,,North America
|
8 |
+
Argentina,2020,5.900567055,9.850449562,0.897103846,69.19999695,0.823391616,-0.122354329,0.815780461,0.763523877,0.342496932,South America
|
9 |
+
Armenia,2019,5.4880867,9.521769524,0.781603873,67.19999695,0.844324112,-0.172368988,0.583472729,0.598237813,0.430463403,Europe
|
10 |
+
Australia,2020,7.137367725,10.75986385,0.936517,74.19999695,0.905282974,0.210030302,0.491094828,0.769181728,0.205077678,Oceania
|
11 |
+
Austria,2020,7.213489056,10.85111809,0.924831212,73.59999847,0.911909878,0.011031743,0.463830173,0.769316614,0.206499651,Europe
|
12 |
+
Azerbaijan,2019,5.173389435,9.575250626,0.88675642,65.80000305,0.854248524,-0.214162916,0.457260668,0.642546833,0.163920254,Europe
|
13 |
+
Bahamas,,,,,,,,,,,North America
|
14 |
+
Bahrain,2020,6.173175812,10.61990356,0.847745061,69.69999695,0.94523257,0.132441044,,0.789794981,0.296835452,Asia
|
15 |
+
Bangladesh,2020,5.279986858,8.472194672,0.739337921,65.30000305,0.777467191,-0.008851291,0.741659164,0.582380831,0.331708789,Asia
|
16 |
+
Barbados,,,,,,,,,,,North America
|
17 |
+
Belarus,2019,5.821453094,9.860038757,0.916740477,66.40000153,0.656933606,-0.185933307,0.545904756,0.590850592,0.189821407,Europe
|
18 |
+
Belgium,2020,6.838760853,10.77053738,0.903558671,72.40000153,0.766917825,-0.163784489,0.633626759,0.646510303,0.260188788,Europe
|
19 |
+
Belize,2014,5.955646515,8.883127213,0.756932497,62.22000122,0.873569071,0.021995628,0.782105386,0.754977345,0.281604409,North America
|
20 |
+
Benin,2020,4.407745838,8.102292061,0.506636083,55.09999847,0.783114672,-0.08348871,0.531883657,0.608584642,0.304512441,Africa
|
21 |
+
Bhutan,2015,5.082128525,9.218923569,0.847574413,60.20000076,0.83010155,0.277412355,0.633955777,0.80964148,0.311589301,Asia
|
22 |
+
Bolivia,2020,5.559258938,8.997989655,0.804810882,64.19999695,0.877031922,-0.053763788,0.868208289,0.789818466,0.381791174,South America
|
23 |
+
Bosnia and Herzegovina,2020,5.515816212,9.58334446,0.898518682,68.40000153,0.740250826,0.137954175,0.916052163,0.644237339,0.325412303,Europe
|
24 |
+
Botswana,2019,3.471084833,9.785069466,0.773667216,59.59999847,0.832542658,-0.239000931,0.792079508,0.711796343,0.272721767,Africa
|
25 |
+
Brazil,2020,6.109717846,9.522140503,0.830832124,66.80000305,0.786235094,-0.052820019,0.728772223,0.692023873,0.38913855,South America
|
26 |
+
Brunei,,,,,,,,,,,Asia
|
27 |
+
Bulgaria,2020,5.597723007,9.990657806,0.916242361,67.19999695,0.818224788,-0.004322314,0.900632977,0.705834627,0.221351057,Europe
|
28 |
+
Burkina Faso,2019,4.740892887,7.691488266,0.683102369,54.40000153,0.677546859,-0.004089894,0.729396582,0.690925896,0.364775389,Africa
|
29 |
+
Burundi,2018,3.775283098,6.635322094,0.484715223,53.40000153,0.646398604,-0.023876166,0.598607659,0.6664415,0.362766594,Africa
|
30 |
+
Cambodia,2020,4.376985073,8.361935616,0.724422634,62.40000153,0.963075459,0.052429765,0.863053977,0.877953529,0.38985163,Asia
|
31 |
+
Cameroon,2020,5.2410779,8.17463398,0.720046639,54.29999924,0.674509168,0.049266182,0.836517215,0.629614651,0.386478961,Africa
|
32 |
+
Canada,2020,7.024904728,10.72951412,0.930610716,74,0.8868922,0.049636856,0.434012353,0.795948744,0.306673735,North America
|
33 |
+
Central African Republic,2017,3.475862026,6.81651926,0.319589138,45.20000076,0.645252347,0.0727861,0.889566004,0.613865197,0.599335492,Africa
|
34 |
+
Chad,2019,4.250799179,7.364943981,0.640452087,48.70000076,0.537245691,0.055000938,0.832283497,0.587211192,0.460061282,Africa
|
35 |
+
Chile,2020,6.150642872,10.0201416,0.888412297,70.09999847,0.781383574,0.032990757,0.811818838,0.814602733,0.336028606,South America
|
36 |
+
China,2020,5.771064758,9.70175457,0.80833447,69.90000153,0.891122997,-0.103214338,,0.789345384,0.244918227,Asia
|
37 |
+
Colombia,2020,5.70917511,9.495491028,0.797035217,68.30000305,0.840186119,-0.084642209,0.807964027,0.795132697,0.340158582,South America
|
38 |
+
Comoros,2019,4.608616352,8.03313446,0.632012963,57.5,0.538261533,0.077253081,0.762232482,0.736221731,0.336162895,Africa
|
39 |
+
Congo (Brazzaville),2019,5.212622643,8.101092339,0.624768078,58.5,0.686451972,-0.046051238,0.74058944,0.645253956,0.40504083,Africa
|
40 |
+
Congo (Kinshasa),2017,4.311033249,6.965845585,0.669688404,52.90000153,0.704239547,0.068378173,0.809181869,0.550525904,0.404262066,Africa
|
41 |
+
Costa Rica,2019,6.997618675,9.885446548,0.906077445,71.5,0.926830113,-0.145994335,0.835628331,0.848347604,0.303327233,North America
|
42 |
+
Croatia,2020,6.507992268,10.16581726,0.922913492,71.40000153,0.836657643,-0.062968105,0.960939288,0.742780507,0.285609752,Europe
|
43 |
+
Cuba,2006,5.417868614,,0.969595134,68.44000244,0.281457931,,,0.646711767,0.276601523,North America
|
44 |
+
Cyprus,2020,6.259810448,,0.805559397,74.09999847,0.762782335,,0.816231728,0.758863032,0.283522457,Europe
|
45 |
+
North Cyprus,2019,5.4666152,,0.803294539,,0.792734623,,0.640058875,0.493692875,0.296411127,Asia
|
46 |
+
Czech Republic,2020,6.897091389,10.5301342,0.96405369,71.30000305,0.906422019,-0.127022371,0.883699596,0.832057655,0.290441692,Europe
|
47 |
+
Denmark,2020,7.514631271,10.90999508,0.947371364,73,0.937931836,0.052293025,0.213841751,0.81766367,0.227101892,Europe
|
48 |
+
Djibouti,2011,4.369193554,7.880099297,0.632973254,54.70000076,0.746439457,-0.057318915,0.518930137,0.579302847,0.180592626,Africa
|
49 |
+
Dominican Republic,2020,5.168409824,9.802446365,0.806117654,66.40000153,0.834642947,-0.127834037,0.636116564,0.73386693,0.313928306,North America
|
50 |
+
East Timor,,,,,,,,,,,Asia
|
51 |
+
Ecuador,2020,5.35446167,9.243865013,0.804008543,69.09999847,0.828511536,-0.157090038,0.854780495,0.789940715,0.416027963,South America
|
52 |
+
Egypt,2020,4.472396851,9.382726669,0.672725499,62.29999924,0.769550323,-0.112341978,,0.598908663,0.442033589,Africa
|
53 |
+
El Salvador,2020,5.461926937,9.018845558,0.695624352,66.69999695,0.923944831,-0.1264745,0.583036363,0.838904202,0.329439789,North America
|
54 |
+
Equatorial Guinea,,,,,,,,,,,Africa
|
55 |
+
Eritrea,,,,,,,,,,,Africa
|
56 |
+
Estonia,2020,6.452563763,10.4585886,0.957770467,69,0.954200566,-0.082279153,0.397834778,0.806923807,0.187679499,Europe
|
57 |
+
Ethiopia,2020,4.549219608,7.7109828,0.823137581,59.5,0.768694282,0.188496858,0.783822417,0.669388652,0.251514345,Africa
|
58 |
+
Fiji,,,,,,,,,,,Oceania
|
59 |
+
Finland,2020,7.889349937,10.75044632,0.961620748,72.09999847,0.962423682,-0.115531988,0.163635895,0.7442922,0.192897573,Europe
|
60 |
+
France,2020,6.714111805,10.64328003,0.947354019,74.19999695,0.823386312,-0.168960527,0.564640582,0.731813908,0.23095043,Europe
|
61 |
+
Gabon,2019,4.914393425,9.607087135,0.763051689,60.20000076,0.736349881,-0.202519819,0.84625423,0.692702413,0.412960976,Africa
|
62 |
+
Gambia,2019,5.163627148,7.69934988,0.693870127,55.29999924,0.676595271,0.410180479,0.798108101,0.772816181,0.400723279,Africa
|
63 |
+
Georgia,2020,5.123143196,9.569304466,0.71834594,64.09999847,0.764352381,-0.221125469,0.582734704,0.610894918,0.294512063,Europe
|
64 |
+
Germany,2020,7.311897755,10.83349895,0.905080497,72.80000305,0.864356041,-0.06004804,0.424088776,0.759594321,0.205927119,Europe
|
65 |
+
Ghana,2020,5.31948328,8.589605331,0.642703354,58,0.823720038,0.199632064,0.847024918,0.712765932,0.252728432,Africa
|
66 |
+
Greece,2020,5.787615776,10.21457958,0.778536558,72.80000305,0.56461364,-0.24080646,0.764324546,0.684457839,0.321684211,Europe
|
67 |
+
Grenada,,,,,,,,,,,North America
|
68 |
+
Guatemala,2019,6.262175083,9.063875198,0.774074376,65.09999847,0.90067631,-0.062302988,0.772577941,0.85941267,0.310789257,North America
|
69 |
+
Guinea,2019,4.76768446,7.849340439,0.655124187,55.5,0.691399097,0.09681724,0.755585492,0.684646904,0.473388433,Africa
|
70 |
+
Guyana,2007,5.992826462,8.773288727,0.848765194,57.25999832,0.694005668,0.110037036,0.835569084,0.767540574,0.29641977,South America
|
71 |
+
Haiti,2018,3.614928007,7.477138042,0.537975907,55.70000076,0.591468394,0.421520352,0.720444739,0.5841133,0.358720034,North America
|
72 |
+
Honduras,2019,5.930051327,8.65311718,0.797148347,67.40000153,0.846190035,0.062708922,0.814962924,0.849954963,0.278882086,North America
|
73 |
+
Hong Kong,2020,5.295341492,,0.812942982,,0.705452263,,0.380351216,0.608647346,0.210313618,Asia
|
74 |
+
Hungary,2020,6.038049698,10.33514786,0.943400383,68.40000153,0.77096808,-0.120404616,0.836105108,0.735238373,0.24005194,Europe
|
75 |
+
Iceland,2020,7.575489521,10.82420063,0.983286083,73,0.948627174,0.160273999,0.64406389,0.863017619,0.171795145,Europe
|
76 |
+
India,2020,4.225281239,8.702772141,0.616639256,60.90000153,0.906391323,0.074823797,0.780124009,0.752433956,0.383162528,Asia
|
77 |
+
Indonesia,2019,5.346512794,9.376888275,0.80191803,62.29999924,0.865859151,0.555348039,0.860784769,0.876714051,0.301702797,Asia
|
78 |
+
Iran,2020,4.864528179,,0.757218659,66.59999847,0.599594474,,0.70990169,0.582420528,0.470245004,Asia
|
79 |
+
Iraq,2020,4.78516531,9.167185783,0.707847476,61.40000153,0.700214565,-0.020748287,0.849108756,0.644464254,0.531538904,Asia
|
80 |
+
Ireland,2020,7.034930706,11.3228035,0.960311055,72.5,0.882098258,0.013816552,0.355632722,0.796661019,0.246447265,Europe
|
81 |
+
Israel,2020,7.194928169,10.53805351,0.959072173,73.69999695,0.831315815,-0.049371675,0.74763906,0.62139833,0.242825732,Asia
|
82 |
+
Italy,2020,6.488356113,10.56257153,0.889824033,74,0.718155444,-0.149937257,0.844094574,0.670213342,0.311002165,Europe
|
83 |
+
Ivory Coast,2020,5.256503582,8.564923286,0.61310631,50.70000076,0.769998014,0.015563689,0.776687264,0.692646921,0.33991909,Africa
|
84 |
+
Jamaica,2019,6.309238911,9.186201096,0.877814472,67.5,0.890670836,-0.136797056,0.885330021,0.752041101,0.195284143,North America
|
85 |
+
Japan,2020,6.117963314,10.57954788,0.887249112,75.19999695,0.806036115,-0.258745283,0.608698547,0.74246943,0.186461002,Asia
|
86 |
+
Jordan,2020,4.093991756,9.14999485,0.708839893,67.19999695,0.778533459,-0.149825886,,,,Asia
|
87 |
+
Kazakhstan,2020,6.168269157,10.13533592,0.966448963,65.80000305,0.872100115,-0.056175169,0.660798848,0.684102654,0.150359914,Asia
|
88 |
+
Kenya,2020,4.546584129,8.365282059,0.673717618,61.29999924,0.702034473,0.259969592,0.836516023,0.733434856,0.296980411,Africa
|
89 |
+
Kiribati,,,,,,,,,,,Oceania
|
90 |
+
Kosovo,2020,6.294414043,,0.792374492,,0.879837573,,0.90989387,0.72623986,0.201458037,Europe
|
91 |
+
Kuwait,2019,6.106119633,10.81669617,0.841519773,66.90000153,0.867273808,-0.104161076,,0.695362747,0.302876323,Asia
|
92 |
+
Kyrgyzstan,2020,6.249586105,8.503411293,0.902222991,64.69999695,0.934885323,0.102865741,0.931317508,0.803025365,0.257813066,Asia
|
93 |
+
Laos,2020,5.284390926,8.959955215,0.660396278,59.5,0.915028214,0.141430691,0.747997701,0.821680248,0.358349264,Asia
|
94 |
+
Latvia,2020,6.229008675,10.29959011,0.928012192,67.40000153,0.820111692,-0.077660471,0.808821976,0.713628411,0.201582372,Europe
|
95 |
+
Lebanon,2019,4.024219513,9.596782684,0.865968525,67.59999847,0.447001487,-0.081082396,0.890415609,0.321689755,0.494499028,Asia
|
96 |
+
Lesotho,2019,3.5117805,7.925776958,0.789705396,48.70000076,0.716313541,-0.130536228,0.914951444,0.734879911,0.273425519,Africa
|
97 |
+
Liberia,2019,5.121460915,7.263903618,0.71247375,56.90000153,0.705874562,0.050611626,0.828468978,0.635608971,0.389132589,Africa
|
98 |
+
Libya,2019,5.33022213,9.627349854,0.826719344,62.29999924,0.761964321,-0.072672851,0.68641299,0.70874089,0.400737435,Africa
|
99 |
+
Liechtenstein,,,,,,,,,,,Europe
|
100 |
+
Lithuania,2020,6.39137888,10.5036068,0.952544093,68.5,0.824060559,-0.121781312,0.829204798,0.660229564,0.201912001,Europe
|
101 |
+
Luxembourg,2019,7.404015541,11.64816856,0.912104547,72.59999847,0.930321217,-0.045057613,0.389598429,0.789186358,0.211639807,Europe
|
102 |
+
Macedonia,,,,,,,,,,,Europe
|
103 |
+
Madagascar,2019,4.339087486,7.406237125,0.700610101,59.5,0.549535215,-0.012468655,0.719982684,0.723194659,0.303959668,Africa
|
104 |
+
Malawi,2019,3.869123697,6.965763092,0.548956096,58.29999924,0.764864206,0.003596819,0.680247962,0.53669703,0.348162442,Africa
|
105 |
+
Malaysia,2019,5.427954197,10.25240326,0.842498839,67.19999695,0.915778697,0.123324133,0.781943917,0.834177494,0.176071689,Asia
|
106 |
+
Maldives,2018,5.197574615,9.825985909,0.913315058,70.59999847,0.854759276,0.023997834,,,,Asia
|
107 |
+
Mali,2019,4.98799181,7.752494812,0.754558086,52.20000076,0.67040509,-0.037851758,0.846340001,0.711522698,0.357764512,Africa
|
108 |
+
Malta,2020,6.156822681,,0.937920272,72.19999695,0.930600464,,0.67462635,0.601495862,0.410913229,Europe
|
109 |
+
Marshall Islands,,,,,,,,,,,Oceania
|
110 |
+
Mauritania,2019,4.152619362,8.5558424,0.798101962,57.29999924,0.627505183,-0.101856656,0.742890298,0.69183147,0.259738505,Africa
|
111 |
+
Mauritius,2020,6.015300274,9.972017288,0.892565966,67,0.842598081,-0.03669272,0.771790087,0.766984463,0.138401791,Africa
|
112 |
+
Mexico,2020,5.964221001,9.782189369,0.778816223,68.90000153,0.873346984,-0.119389862,0.778165877,0.810109138,0.29155612,North America
|
113 |
+
Micronesia,,,,,,,,,,,Oceania
|
114 |
+
Moldova,2020,5.811628819,9.462109566,0.874061763,66.40000153,0.859083235,-0.058278579,0.941438973,0.727224529,0.267836064,Europe
|
115 |
+
Monaco,,,,,,,,,,,Europe
|
116 |
+
Mongolia,2020,6.011364937,9.395559311,0.917789161,62.70000076,0.718491018,0.141357452,0.842827678,0.636443496,0.259983033,Asia
|
117 |
+
Montenegro,2020,5.722162724,9.912668228,0.887129486,68.90000153,0.801855087,0.059815772,0.844687104,0.60328269,0.411377817,Europe
|
118 |
+
Morocco,2020,4.80261755,8.87091732,0.552520096,66.5,0.818995237,-0.228577554,0.802740276,0.587182403,0.256431192,Africa
|
119 |
+
Mozambique,2019,4.932132721,7.154966831,0.742303729,55.20000076,0.869810224,0.072745018,0.681900442,0.58727473,0.384122759,Africa
|
120 |
+
Myanmar,2020,4.431364059,8.55391407,0.795763254,59.59999847,0.824870706,0.470258176,0.646702111,0.799749196,0.289218217,Asia
|
121 |
+
Namibia,2020,4.451010227,9.104139328,0.740570307,57.09999847,0.665681958,-0.103880182,0.810354829,0.647919536,0.247542083,Africa
|
122 |
+
Nauru,,,,,,,,,,,Oceania
|
123 |
+
Nepal,2019,5.448724747,8.136457443,0.772273064,64.59999847,0.790347695,0.166975796,0.711842477,0.535798132,0.357100308,Asia
|
124 |
+
Netherlands,2020,7.504447937,10.9005003,0.943956137,72.5,0.934522629,0.151298046,0.280604511,0.783990622,0.246511325,Europe
|
125 |
+
New Zealand,2020,7.257381916,10.60045719,0.951990783,73.59999847,0.918154597,0.125259653,0.282767951,0.849415004,0.208541051,Oceania
|
126 |
+
Nicaragua,2019,6.112545013,8.595469475,0.873863935,67.80000305,0.882678449,0.029247265,0.62198174,0.83542347,0.337012976,North America
|
127 |
+
Niger,2019,5.003544331,7.105849266,0.67695874,54,0.83136189,0.02595989,0.728855133,0.815915167,0.304438263,Africa
|
128 |
+
Nigeria,2020,5.502948284,8.484203339,0.739289463,50.5,0.713061512,0.099404059,0.912774444,0.743977726,0.315886825,Africa
|
129 |
+
North Korea,,,,,,,,,,,Asia
|
130 |
+
North Macedonia,2020,5.053664207,9.690014839,0.750374198,65.55988312,0.787284732,0.131274343,0.877421141,0.604626834,0.365126073,Europe
|
131 |
+
Norway,2020,7.290032387,11.04216003,0.955979943,73.40000153,0.964561105,0.075148538,0.271083295,0.823093832,0.216033921,Europe
|
132 |
+
Oman,2011,6.852982044,10.38246155,,65.5,0.916293025,0.024908492,,,0.295164108,Asia
|
133 |
+
Pakistan,2019,4.442717552,8.453290939,0.617295742,58.90000153,0.684675574,0.123729475,0.775998056,0.581067383,0.424240083,Asia
|
134 |
+
Palau,,,,,,,,,,,Oceania
|
135 |
+
Palestinian Territories,2019,4.48253727,,0.832550049,,0.653488278,,0.829282761,0.62517643,0.3996723,Asia
|
136 |
+
Panama,2019,6.085955143,10.35643101,0.885721385,69.69999695,0.882961094,-0.198984995,0.868827522,0.877561629,0.243566602,North America
|
137 |
+
Papua New Guinea,,,,,,,,,,,Oceania
|
138 |
+
Paraguay,2019,5.652625561,9.448143959,0.892487168,65.90000153,0.876052618,0.028112838,0.881786108,0.85772413,0.275186718,South America
|
139 |
+
Peru,2019,5.999381542,9.460934639,0.809075952,68.40000153,0.814805925,-0.129735783,0.873601913,0.820448101,0.374985486,South America
|
140 |
+
Philippines,2020,5.079585075,9.061443329,0.781140387,62.09999847,0.932041705,-0.115542881,0.744283676,0.803562105,0.326889008,Asia
|
141 |
+
Poland,2020,6.139455318,10.37120342,0.95317173,70.09999847,0.767428696,-0.006559356,0.786873639,0.759842575,0.328937918,Europe
|
142 |
+
Portugal,2020,5.767792225,10.37082005,0.874990344,72.80000305,0.91313076,-0.238090202,0.867157161,0.647768855,0.382812679,Europe
|
143 |
+
Qatar,2015,6.374529362,11.48561478,,68.30000305,,,,,,Asia
|
144 |
+
Romania,2019,6.129942417,10.30591393,0.841905951,67.5,0.84754318,-0.221422106,0.954130709,0.697443366,0.243659228,Europe
|
145 |
+
Russia,2020,5.495288849,10.16223526,0.887020171,65.09999847,0.714466453,-0.070612296,0.823047519,0.645214975,0.189521536,Asia
|
146 |
+
Rwanda,2019,3.268152237,7.708060741,0.489458233,61.70000076,0.868999183,0.064065881,0.167970896,0.736067951,0.417667687,Africa
|
147 |
+
Saint Kitts and Nevis,,,,,,,,,,,North America
|
148 |
+
Saint Lucia,,,,,,,,,,,North America
|
149 |
+
Saint Vincent and the Grenadines,,,,,,,,,,,North America
|
150 |
+
Samoa,,,,,,,,,,,Oceania
|
151 |
+
San Marino,,,,,,,,,,,Europe
|
152 |
+
Sao Tome and Principe,,,,,,,,,,,Africa
|
153 |
+
Saudi Arabia,2020,6.559588432,10.70066261,0.890255928,66.90000153,0.884220123,-0.11053171,,0.753607631,0.251199067,Asia
|
154 |
+
Senegal,2019,5.488736629,8.130020142,0.687614083,60,0.758841753,-0.018803915,0.79567343,0.788973033,0.331925839,Africa
|
155 |
+
Serbia,2020,6.041546345,9.788259506,0.852101862,69,0.843479872,0.149401307,0.824472487,0.602846146,0.357580274,Europe
|
156 |
+
Seychelles,,,,,,,,,,,Africa
|
157 |
+
Sierra Leone,2019,3.447381496,7.449131966,0.610779762,52.40000153,0.717769563,0.074055701,0.873861432,0.513375223,0.438134462,Africa
|
158 |
+
Singapore,2019,6.378359795,11.48598003,0.924918354,77.09999847,0.938041747,0.027229678,0.069619603,0.722598016,0.138069153,Asia
|
159 |
+
Slovakia,2020,6.519098282,10.33151245,0.954159975,69.5,0.76189661,-0.074873514,0.900533676,0.763582885,0.274447888,Europe
|
160 |
+
Slovenia,2020,6.462076187,10.47786999,0.953437507,71.69999695,0.958442569,-0.08135689,0.796557486,0.609949231,0.313852519,Europe
|
161 |
+
Solomon Islands,,,,,,,,,,,Oceania
|
162 |
+
Somalia,2016,4.667941093,,0.594416559,50,0.917322814,,0.44080174,0.891423166,0.193282232,Africa
|
163 |
+
South Africa,2020,4.946800709,9.332463264,0.891050339,57.29999924,0.756946266,-0.014951312,0.912407219,0.820337772,0.294276476,Africa
|
164 |
+
South Korea,2020,5.792695522,10.64807415,0.807952285,74.19999695,0.711480439,-0.105867893,0.664694011,0.639555693,0.247059658,Asia
|
165 |
+
South Sudan,2017,2.816622496,,0.556822658,51,0.456011087,,0.761269629,0.585602164,0.517363787,Africa
|
166 |
+
Spain,2020,6.502175331,10.48805904,0.934934676,75,0.783256531,-0.120613314,0.729977489,0.686177611,0.316617101,Europe
|
167 |
+
Sri Lanka,2019,4.213299274,9.478693962,0.814939141,67.40000153,0.824277341,0.051186614,0.863342285,0.816390395,0.314542711,Asia
|
168 |
+
Sudan,2014,4.138672829,8.3170681,0.81061554,55.11999893,0.3900958,-0.063394643,0.793785036,0.540845037,0.302724987,Africa
|
169 |
+
Suriname,2012,6.269286633,9.797084808,0.797262073,62.24000168,0.885488451,-0.077173166,0.751282871,0.764222682,0.250364989,South America
|
170 |
+
Swaziland,2019,4.396114826,9.069709778,0.759097695,51.27039337,0.596682429,-0.190737918,0.723507762,0.777627289,0.279595166,Africa
|
171 |
+
Sweden,2020,7.314341068,10.83790398,0.93558234,72.80000305,0.951181591,0.09081845,0.203440145,0.766376078,0.22193329,Europe
|
172 |
+
Switzerland,2020,7.508435249,11.08089256,0.946316481,74.69999695,0.917343259,-0.063502058,0.280367136,0.768704712,0.19322899,Europe
|
173 |
+
Syria,2015,3.46191287,8.441536903,0.463912874,55.20000076,0.448270857,0.044834916,0.685236931,0.369439602,0.642588735,Asia
|
174 |
+
Taiwan,2020,6.751067638,,0.900832534,,0.798834741,,0.710567415,0.84539336,0.082736954,Asia
|
175 |
+
Tajikistan,2020,5.373398781,8.080356598,0.789744556,64.69999695,,-0.040467065,0.549786448,0.748897612,0.344161272,Asia
|
176 |
+
Tanzania,2020,3.785684109,7.881270409,0.739817083,58.5,0.830343485,0.295271993,0.520631671,0.685533106,0.271117926,Africa
|
177 |
+
Thailand,2020,5.884544373,9.76924324,0.866702616,67.59999847,0.840463281,0.273055583,0.918340027,0.783269882,0.326168567,Asia
|
178 |
+
Togo,2019,4.179493904,7.375211239,0.53870219,55.09999847,0.617419779,0.064774826,0.736675024,0.590229273,0.443869889,Africa
|
179 |
+
Tonga,,,,,,,,,,,Oceania
|
180 |
+
Trinidad and Tobago,2017,6.191859722,10.18292046,0.916029036,63.5,0.859140456,0.014855396,0.911336362,0.846467078,0.248098806,North America
|
181 |
+
Tunisia,2020,4.730811119,9.230624199,0.719013214,67.5,0.667758107,-0.201814234,0.877354085,0.584633887,0.438774347,Africa
|
182 |
+
Turkey,2020,4.861554146,10.21908379,0.856730223,67.59999847,0.510385871,-0.110888988,0.774417162,0.384292454,0.440387309,Asia
|
183 |
+
Turkmenistan,2019,5.474299908,9.651184082,0.981501758,62.59999847,0.891526878,0.284880638,,0.509914517,0.183343247,Asia
|
184 |
+
Tuvalu,,,,,,,,,,,Oceania
|
185 |
+
Uganda,2020,4.640909672,7.68445015,0.800461173,56.5,0.687482119,0.147117555,0.877587259,0.69894886,0.424706668,Africa
|
186 |
+
Ukraine,2020,5.269675732,9.427873611,0.884686291,65.19999695,0.784273446,0.126344204,0.945668995,0.687720656,0.284736186,Europe
|
187 |
+
United Arab Emirates,2020,6.458392143,11.05288982,0.826755583,67.5,0.9421615,0.060019661,,0.75165993,0.298480302,Asia
|
188 |
+
United Kingdom,2020,6.798177242,10.62581062,0.929353237,72.69999695,0.884624004,0.20250842,0.490203947,0.758163571,0.224655122,Europe
|
189 |
+
United States,2020,7.028088093,11.00065613,0.937369823,68.09999847,0.850447297,0.034103353,0.678124607,0.787371993,0.295499027,North America
|
190 |
+
Uruguay,2020,6.309681416,9.937191963,0.921070337,69.19999695,0.907761931,-0.083986901,0.491007835,0.807350934,0.264692068,South America
|
191 |
+
Uzbekistan,2019,6.154049397,8.853480339,0.915275931,65.40000153,0.970294535,0.304297596,0.511196852,0.844808519,0.219745517,Asia
|
192 |
+
Vanuatu,,,,,,,,,,,Oceania
|
193 |
+
Vatican City,,,,,,,,,,,Europe
|
194 |
+
Venezuela,2020,4.573829651,,0.80522424,66.90000153,0.611814618,,0.811319113,0.722391427,0.396250457,South America
|
195 |
+
Vietnam,2019,5.467451096,8.992330551,0.847592115,68.09999847,0.95246917,-0.125530764,0.787889242,0.751159906,0.18561019,Asia
|
196 |
+
Yemen,2019,4.196912766,,0.870042801,57.5,0.651308239,,0.798228264,0.54280591,0.213043228,Asia
|
197 |
+
Zambia,2020,4.837992191,8.116580009,0.766871631,56.29999924,0.750422418,0.056029193,0.809749782,0.691082239,0.344525933,Africa
|
198 |
+
Zimbabwe,2020,3.159802198,7.828756809,0.717242658,56.79999924,0.643302977,-0.008695764,0.78852278,0.702572763,0.345736384,Africa
|
Assets/Countries/countries.csv
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Country,Continent
|
2 |
+
Algeria,Africa
|
3 |
+
Angola,Africa
|
4 |
+
Benin,Africa
|
5 |
+
Botswana,Africa
|
6 |
+
Burkina,Africa
|
7 |
+
Burundi,Africa
|
8 |
+
Cameroon,Africa
|
9 |
+
Cape Verde,Africa
|
10 |
+
Central African Republic,Africa
|
11 |
+
Chad,Africa
|
12 |
+
Comoros,Africa
|
13 |
+
Congo,Africa
|
14 |
+
"Congo, Democratic Republic of",Africa
|
15 |
+
Djibouti,Africa
|
16 |
+
Egypt,Africa
|
17 |
+
Equatorial Guinea,Africa
|
18 |
+
Eritrea,Africa
|
19 |
+
Ethiopia,Africa
|
20 |
+
Gabon,Africa
|
21 |
+
Gambia,Africa
|
22 |
+
Ghana,Africa
|
23 |
+
Guinea,Africa
|
24 |
+
Guinea-Bissau,Africa
|
25 |
+
Ivory Coast,Africa
|
26 |
+
Kenya,Africa
|
27 |
+
Lesotho,Africa
|
28 |
+
Liberia,Africa
|
29 |
+
Libya,Africa
|
30 |
+
Madagascar,Africa
|
31 |
+
Malawi,Africa
|
32 |
+
Mali,Africa
|
33 |
+
Mauritania,Africa
|
34 |
+
Mauritius,Africa
|
35 |
+
Morocco,Africa
|
36 |
+
Mozambique,Africa
|
37 |
+
Namibia,Africa
|
38 |
+
Niger,Africa
|
39 |
+
Nigeria,Africa
|
40 |
+
Rwanda,Africa
|
41 |
+
Sao Tome and Principe,Africa
|
42 |
+
Senegal,Africa
|
43 |
+
Seychelles,Africa
|
44 |
+
Sierra Leone,Africa
|
45 |
+
Somalia,Africa
|
46 |
+
South Africa,Africa
|
47 |
+
South Sudan,Africa
|
48 |
+
Sudan,Africa
|
49 |
+
Swaziland,Africa
|
50 |
+
Tanzania,Africa
|
51 |
+
Togo,Africa
|
52 |
+
Tunisia,Africa
|
53 |
+
Uganda,Africa
|
54 |
+
Zambia,Africa
|
55 |
+
Zimbabwe,Africa
|
56 |
+
Afghanistan,Asia
|
57 |
+
Bahrain,Asia
|
58 |
+
Bangladesh,Asia
|
59 |
+
Bhutan,Asia
|
60 |
+
Brunei,Asia
|
61 |
+
Burma (Myanmar),Asia
|
62 |
+
Cambodia,Asia
|
63 |
+
China,Asia
|
64 |
+
East Timor,Asia
|
65 |
+
India,Asia
|
66 |
+
Indonesia,Asia
|
67 |
+
Iran,Asia
|
68 |
+
Iraq,Asia
|
69 |
+
Israel,Asia
|
70 |
+
Japan,Asia
|
71 |
+
Jordan,Asia
|
72 |
+
Kazakhstan,Asia
|
73 |
+
"Korea, North",Asia
|
74 |
+
"Korea, South",Asia
|
75 |
+
Kuwait,Asia
|
76 |
+
Kyrgyzstan,Asia
|
77 |
+
Laos,Asia
|
78 |
+
Lebanon,Asia
|
79 |
+
Malaysia,Asia
|
80 |
+
Maldives,Asia
|
81 |
+
Mongolia,Asia
|
82 |
+
Nepal,Asia
|
83 |
+
Oman,Asia
|
84 |
+
Pakistan,Asia
|
85 |
+
Philippines,Asia
|
86 |
+
Qatar,Asia
|
87 |
+
Russian Federation,Asia
|
88 |
+
Saudi Arabia,Asia
|
89 |
+
Singapore,Asia
|
90 |
+
Sri Lanka,Asia
|
91 |
+
Syria,Asia
|
92 |
+
Tajikistan,Asia
|
93 |
+
Thailand,Asia
|
94 |
+
Turkey,Asia
|
95 |
+
Turkmenistan,Asia
|
96 |
+
United Arab Emirates,Asia
|
97 |
+
Uzbekistan,Asia
|
98 |
+
Vietnam,Asia
|
99 |
+
Yemen,Asia
|
100 |
+
Albania,Europe
|
101 |
+
Andorra,Europe
|
102 |
+
Armenia,Europe
|
103 |
+
Austria,Europe
|
104 |
+
Azerbaijan,Europe
|
105 |
+
Belarus,Europe
|
106 |
+
Belgium,Europe
|
107 |
+
Bosnia and Herzegovina,Europe
|
108 |
+
Bulgaria,Europe
|
109 |
+
Croatia,Europe
|
110 |
+
Cyprus,Europe
|
111 |
+
CZ,Europe
|
112 |
+
Denmark,Europe
|
113 |
+
Estonia,Europe
|
114 |
+
Finland,Europe
|
115 |
+
France,Europe
|
116 |
+
Georgia,Europe
|
117 |
+
Germany,Europe
|
118 |
+
Greece,Europe
|
119 |
+
Hungary,Europe
|
120 |
+
Iceland,Europe
|
121 |
+
Ireland,Europe
|
122 |
+
Italy,Europe
|
123 |
+
Latvia,Europe
|
124 |
+
Liechtenstein,Europe
|
125 |
+
Lithuania,Europe
|
126 |
+
Luxembourg,Europe
|
127 |
+
Macedonia,Europe
|
128 |
+
Malta,Europe
|
129 |
+
Moldova,Europe
|
130 |
+
Monaco,Europe
|
131 |
+
Montenegro,Europe
|
132 |
+
Netherlands,Europe
|
133 |
+
Norway,Europe
|
134 |
+
Poland,Europe
|
135 |
+
Portugal,Europe
|
136 |
+
Romania,Europe
|
137 |
+
San Marino,Europe
|
138 |
+
Serbia,Europe
|
139 |
+
Slovakia,Europe
|
140 |
+
Slovenia,Europe
|
141 |
+
Spain,Europe
|
142 |
+
Sweden,Europe
|
143 |
+
Switzerland,Europe
|
144 |
+
Ukraine,Europe
|
145 |
+
United Kingdom,Europe
|
146 |
+
Vatican City,Europe
|
147 |
+
Antigua and Barbuda,North America
|
148 |
+
Bahamas,North America
|
149 |
+
Barbados,North America
|
150 |
+
Belize,North America
|
151 |
+
Canada,North America
|
152 |
+
Costa Rica,North America
|
153 |
+
Cuba,North America
|
154 |
+
Dominica,North America
|
155 |
+
Dominican Republic,North America
|
156 |
+
El Salvador,North America
|
157 |
+
Grenada,North America
|
158 |
+
Guatemala,North America
|
159 |
+
Haiti,North America
|
160 |
+
Honduras,North America
|
161 |
+
Jamaica,North America
|
162 |
+
Mexico,North America
|
163 |
+
Nicaragua,North America
|
164 |
+
Panama,North America
|
165 |
+
Saint Kitts and Nevis,North America
|
166 |
+
Saint Lucia,North America
|
167 |
+
Saint Vincent and the Grenadines,North America
|
168 |
+
Trinidad and Tobago,North America
|
169 |
+
US,North America
|
170 |
+
Australia,Oceania
|
171 |
+
Fiji,Oceania
|
172 |
+
Kiribati,Oceania
|
173 |
+
Marshall Islands,Oceania
|
174 |
+
Micronesia,Oceania
|
175 |
+
Nauru,Oceania
|
176 |
+
New Zealand,Oceania
|
177 |
+
Palau,Oceania
|
178 |
+
Papua New Guinea,Oceania
|
179 |
+
Samoa,Oceania
|
180 |
+
Solomon Islands,Oceania
|
181 |
+
Tonga,Oceania
|
182 |
+
Tuvalu,Oceania
|
183 |
+
Vanuatu,Oceania
|
184 |
+
Argentina,South America
|
185 |
+
Bolivia,South America
|
186 |
+
Brazil,South America
|
187 |
+
Chile,South America
|
188 |
+
Colombia,South America
|
189 |
+
Ecuador,South America
|
190 |
+
Guyana,South America
|
191 |
+
Paraguay,South America
|
192 |
+
Peru,South America
|
193 |
+
Suriname,South America
|
194 |
+
Uruguay,South America
|
195 |
+
Venezuela,South America
|
Assets/Professions/.ipynb_checkpoints/Standard_Occupational_Classifications_Orgin-checkpoint.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Where did this data come from?
|
2 |
+
|
3 |
+
In looking for a solid list, I determined that the US Bureau of Labor Statistics would provide an excellent starting point for comprehensive listings of titles. This data can be found at [Standard Occupational Classifications in 2018](https://www.bls.gov/soc/2018/home.htm). Specifically, I made use of their [Direct Match Title File](https://www.bls.gov/soc/2018/home.htm#match), because it seemed to have the most comprehensive list and provided SOC categories.
|
4 |
+
|
5 |
+
Here's the Header from the file:
|
6 |
+
> U.S. Bureau of Labor Statistics
|
7 |
+
> On behalf of the Office of Management and Budget (OMB) and the Standard Occupational Classification Policy Committee (SOCPC)
|
8 |
+
> November 2017 (Updated April 15, 2020)
|
9 |
+
> ***Questions should be emailed to soc@bls.gov***
|
Assets/Professions/.ipynb_checkpoints/clean-SOC-2018-checkpoint.ipynb
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "08cf1c6f-0895-4e7b-9279-109c55dd6596",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd, spacy, nltk, numpy as np, re, ssl"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 52,
|
16 |
+
"id": "e3a83c6d-bfb4-4aa2-a9dd-a4fd7ffe6d03",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_csv(\"soc_2018_direct_match_title_file.csv\")"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 53,
|
26 |
+
"id": "afa91f8f-d7f6-47a0-adc3-b21866acc2fa",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/html": [
|
32 |
+
"<div>\n",
|
33 |
+
"<style scoped>\n",
|
34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
+
" vertical-align: middle;\n",
|
36 |
+
" }\n",
|
37 |
+
"\n",
|
38 |
+
" .dataframe tbody tr th {\n",
|
39 |
+
" vertical-align: top;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe thead th {\n",
|
43 |
+
" text-align: right;\n",
|
44 |
+
" }\n",
|
45 |
+
"</style>\n",
|
46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
+
" <thead>\n",
|
48 |
+
" <tr style=\"text-align: right;\">\n",
|
49 |
+
" <th></th>\n",
|
50 |
+
" <th>2018 SOC Code</th>\n",
|
51 |
+
" <th>2018 SOC Title</th>\n",
|
52 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
53 |
+
" <th>Illustrative Example</th>\n",
|
54 |
+
" </tr>\n",
|
55 |
+
" </thead>\n",
|
56 |
+
" <tbody>\n",
|
57 |
+
" <tr>\n",
|
58 |
+
" <th>0</th>\n",
|
59 |
+
" <td>11-1011</td>\n",
|
60 |
+
" <td>Chief Executives</td>\n",
|
61 |
+
" <td>Admiral</td>\n",
|
62 |
+
" <td>x</td>\n",
|
63 |
+
" </tr>\n",
|
64 |
+
" <tr>\n",
|
65 |
+
" <th>1</th>\n",
|
66 |
+
" <td>11-1011</td>\n",
|
67 |
+
" <td>Chief Executives</td>\n",
|
68 |
+
" <td>CEO</td>\n",
|
69 |
+
" <td>NaN</td>\n",
|
70 |
+
" </tr>\n",
|
71 |
+
" <tr>\n",
|
72 |
+
" <th>2</th>\n",
|
73 |
+
" <td>11-1011</td>\n",
|
74 |
+
" <td>Chief Executives</td>\n",
|
75 |
+
" <td>Chief Executive Officer</td>\n",
|
76 |
+
" <td>NaN</td>\n",
|
77 |
+
" </tr>\n",
|
78 |
+
" <tr>\n",
|
79 |
+
" <th>3</th>\n",
|
80 |
+
" <td>11-1011</td>\n",
|
81 |
+
" <td>Chief Executives</td>\n",
|
82 |
+
" <td>Chief Financial Officer</td>\n",
|
83 |
+
" <td>x</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>4</th>\n",
|
87 |
+
" <td>11-1011</td>\n",
|
88 |
+
" <td>Chief Executives</td>\n",
|
89 |
+
" <td>Chief Operating Officer</td>\n",
|
90 |
+
" <td>x</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </tbody>\n",
|
93 |
+
"</table>\n",
|
94 |
+
"</div>"
|
95 |
+
],
|
96 |
+
"text/plain": [
|
97 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title \\\n",
|
98 |
+
"0 11-1011 Chief Executives Admiral \n",
|
99 |
+
"1 11-1011 Chief Executives CEO \n",
|
100 |
+
"2 11-1011 Chief Executives Chief Executive Officer \n",
|
101 |
+
"3 11-1011 Chief Executives Chief Financial Officer \n",
|
102 |
+
"4 11-1011 Chief Executives Chief Operating Officer \n",
|
103 |
+
"\n",
|
104 |
+
" Illustrative Example \n",
|
105 |
+
"0 x \n",
|
106 |
+
"1 NaN \n",
|
107 |
+
"2 NaN \n",
|
108 |
+
"3 x \n",
|
109 |
+
"4 x "
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"execution_count": 53,
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "execute_result"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"source": [
|
118 |
+
"df.head()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 54,
|
124 |
+
"id": "c2cc8198-f1ba-4318-b4f0-ae2d525290ff",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"df = df.drop(\"Illustrative Example\", axis=1)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 55,
|
134 |
+
"id": "020c3356-8263-47af-b6e3-bf6d27bfee78",
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"text/html": [
|
140 |
+
"<div>\n",
|
141 |
+
"<style scoped>\n",
|
142 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
143 |
+
" vertical-align: middle;\n",
|
144 |
+
" }\n",
|
145 |
+
"\n",
|
146 |
+
" .dataframe tbody tr th {\n",
|
147 |
+
" vertical-align: top;\n",
|
148 |
+
" }\n",
|
149 |
+
"\n",
|
150 |
+
" .dataframe thead th {\n",
|
151 |
+
" text-align: right;\n",
|
152 |
+
" }\n",
|
153 |
+
"</style>\n",
|
154 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
155 |
+
" <thead>\n",
|
156 |
+
" <tr style=\"text-align: right;\">\n",
|
157 |
+
" <th></th>\n",
|
158 |
+
" <th>2018 SOC Code</th>\n",
|
159 |
+
" <th>2018 SOC Title</th>\n",
|
160 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" </thead>\n",
|
163 |
+
" <tbody>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>0</th>\n",
|
166 |
+
" <td>11-1011</td>\n",
|
167 |
+
" <td>Chief Executives</td>\n",
|
168 |
+
" <td>Admiral</td>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" <tr>\n",
|
171 |
+
" <th>1</th>\n",
|
172 |
+
" <td>11-1011</td>\n",
|
173 |
+
" <td>Chief Executives</td>\n",
|
174 |
+
" <td>CEO</td>\n",
|
175 |
+
" </tr>\n",
|
176 |
+
" <tr>\n",
|
177 |
+
" <th>2</th>\n",
|
178 |
+
" <td>11-1011</td>\n",
|
179 |
+
" <td>Chief Executives</td>\n",
|
180 |
+
" <td>Chief Executive Officer</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>3</th>\n",
|
184 |
+
" <td>11-1011</td>\n",
|
185 |
+
" <td>Chief Executives</td>\n",
|
186 |
+
" <td>Chief Financial Officer</td>\n",
|
187 |
+
" </tr>\n",
|
188 |
+
" <tr>\n",
|
189 |
+
" <th>4</th>\n",
|
190 |
+
" <td>11-1011</td>\n",
|
191 |
+
" <td>Chief Executives</td>\n",
|
192 |
+
" <td>Chief Operating Officer</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" </tbody>\n",
|
195 |
+
"</table>\n",
|
196 |
+
"</div>"
|
197 |
+
],
|
198 |
+
"text/plain": [
|
199 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title\n",
|
200 |
+
"0 11-1011 Chief Executives Admiral\n",
|
201 |
+
"1 11-1011 Chief Executives CEO\n",
|
202 |
+
"2 11-1011 Chief Executives Chief Executive Officer\n",
|
203 |
+
"3 11-1011 Chief Executives Chief Financial Officer\n",
|
204 |
+
"4 11-1011 Chief Executives Chief Operating Officer"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"execution_count": 55,
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "execute_result"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"df.head()"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 56,
|
219 |
+
"id": "538a8047-9de8-4d29-961c-6b008c298e67",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"df[\"Major\"] = df[\"2018 SOC Code\"].apply(lambda x: x[:2]).apply(int)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 57,
|
229 |
+
"id": "5969d5bc-69a5-42f6-a774-73a28e85b019",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"# https://www.bls.gov/soc/2018/soc_2018_class_and_coding_structure.pdf determines the categorization.\n",
|
234 |
+
"def high_level_agg(number):\n",
|
235 |
+
" if 11 <= number <= 29:\n",
|
236 |
+
" category = \"Management, Business, Science, and Arts Occupations\"\n",
|
237 |
+
" elif 31 <= number <= 39:\n",
|
238 |
+
" category = \"Service Occupations\"\n",
|
239 |
+
" elif 41 <= number <= 43:\n",
|
240 |
+
" category = \"Sales and Office Occupations\"\n",
|
241 |
+
" elif 45 <= number <= 49:\n",
|
242 |
+
" category = \"Natural Resources, Construction, and Maintenance Occupations\"\n",
|
243 |
+
" elif 51 <= number <= 53:\n",
|
244 |
+
" category = \"Production, Transportation, and Material Moving Occupations\"\n",
|
245 |
+
" else:\n",
|
246 |
+
" category = \"Military Specific Occupations\"\n",
|
247 |
+
" return category"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 58,
|
253 |
+
"id": "ebd35a6d-e0cd-497f-9c0b-9acf24de25dc",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"data": {
|
258 |
+
"text/plain": [
|
259 |
+
"array([11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,\n",
|
260 |
+
" 45, 47, 49, 51, 53, 55])"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
"execution_count": 58,
|
264 |
+
"metadata": {},
|
265 |
+
"output_type": "execute_result"
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"source": [
|
269 |
+
"df.Major.unique()"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 59,
|
275 |
+
"id": "729a6707-e442-4ad4-ad50-c6f701e00757",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"df[\"high_level\"] = df.Major.apply(high_level_agg)"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": 60,
|
285 |
+
"id": "8017e2e0-5635-47fc-bef6-be13e6988177",
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [
|
288 |
+
{
|
289 |
+
"data": {
|
290 |
+
"text/html": [
|
291 |
+
"<div>\n",
|
292 |
+
"<style scoped>\n",
|
293 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
294 |
+
" vertical-align: middle;\n",
|
295 |
+
" }\n",
|
296 |
+
"\n",
|
297 |
+
" .dataframe tbody tr th {\n",
|
298 |
+
" vertical-align: top;\n",
|
299 |
+
" }\n",
|
300 |
+
"\n",
|
301 |
+
" .dataframe thead th {\n",
|
302 |
+
" text-align: right;\n",
|
303 |
+
" }\n",
|
304 |
+
"</style>\n",
|
305 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
306 |
+
" <thead>\n",
|
307 |
+
" <tr style=\"text-align: right;\">\n",
|
308 |
+
" <th></th>\n",
|
309 |
+
" <th>2018 SOC Code</th>\n",
|
310 |
+
" <th>2018 SOC Title</th>\n",
|
311 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
312 |
+
" <th>Major</th>\n",
|
313 |
+
" <th>high_level</th>\n",
|
314 |
+
" </tr>\n",
|
315 |
+
" </thead>\n",
|
316 |
+
" <tbody>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>0</th>\n",
|
319 |
+
" <td>11-1011</td>\n",
|
320 |
+
" <td>Chief Executives</td>\n",
|
321 |
+
" <td>Admiral</td>\n",
|
322 |
+
" <td>11</td>\n",
|
323 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>1</th>\n",
|
327 |
+
" <td>11-1011</td>\n",
|
328 |
+
" <td>Chief Executives</td>\n",
|
329 |
+
" <td>CEO</td>\n",
|
330 |
+
" <td>11</td>\n",
|
331 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
332 |
+
" </tr>\n",
|
333 |
+
" <tr>\n",
|
334 |
+
" <th>2</th>\n",
|
335 |
+
" <td>11-1011</td>\n",
|
336 |
+
" <td>Chief Executives</td>\n",
|
337 |
+
" <td>Chief Executive Officer</td>\n",
|
338 |
+
" <td>11</td>\n",
|
339 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>3</th>\n",
|
343 |
+
" <td>11-1011</td>\n",
|
344 |
+
" <td>Chief Executives</td>\n",
|
345 |
+
" <td>Chief Financial Officer</td>\n",
|
346 |
+
" <td>11</td>\n",
|
347 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" <tr>\n",
|
350 |
+
" <th>4</th>\n",
|
351 |
+
" <td>11-1011</td>\n",
|
352 |
+
" <td>Chief Executives</td>\n",
|
353 |
+
" <td>Chief Operating Officer</td>\n",
|
354 |
+
" <td>11</td>\n",
|
355 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
356 |
+
" </tr>\n",
|
357 |
+
" </tbody>\n",
|
358 |
+
"</table>\n",
|
359 |
+
"</div>"
|
360 |
+
],
|
361 |
+
"text/plain": [
|
362 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title Major \\\n",
|
363 |
+
"0 11-1011 Chief Executives Admiral 11 \n",
|
364 |
+
"1 11-1011 Chief Executives CEO 11 \n",
|
365 |
+
"2 11-1011 Chief Executives Chief Executive Officer 11 \n",
|
366 |
+
"3 11-1011 Chief Executives Chief Financial Officer 11 \n",
|
367 |
+
"4 11-1011 Chief Executives Chief Operating Officer 11 \n",
|
368 |
+
"\n",
|
369 |
+
" high_level \n",
|
370 |
+
"0 Management, Business, Science, and Arts Occupa... \n",
|
371 |
+
"1 Management, Business, Science, and Arts Occupa... \n",
|
372 |
+
"2 Management, Business, Science, and Arts Occupa... \n",
|
373 |
+
"3 Management, Business, Science, and Arts Occupa... \n",
|
374 |
+
"4 Management, Business, Science, and Arts Occupa... "
|
375 |
+
]
|
376 |
+
},
|
377 |
+
"execution_count": 60,
|
378 |
+
"metadata": {},
|
379 |
+
"output_type": "execute_result"
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"source": [
|
383 |
+
"df.head()"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": 61,
|
389 |
+
"id": "885a1379-3795-4e52-a6a6-b1f03476101e",
|
390 |
+
"metadata": {},
|
391 |
+
"outputs": [],
|
392 |
+
"source": [
|
393 |
+
"names = {\"2018 SOC Code\":\"SOC_code\", \"2018 SOC Title\": \"Category\", \"2018 SOC Direct Match Title\":\"Words\"}"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 62,
|
399 |
+
"id": "b77202c7-8e4a-4bed-bc89-e7f146e857ba",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"df = df.rename(columns=names)"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 63,
|
409 |
+
"id": "7035d6dc-0638-4069-8a17-074b7bab5366",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [
|
412 |
+
{
|
413 |
+
"data": {
|
414 |
+
"text/html": [
|
415 |
+
"<div>\n",
|
416 |
+
"<style scoped>\n",
|
417 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
418 |
+
" vertical-align: middle;\n",
|
419 |
+
" }\n",
|
420 |
+
"\n",
|
421 |
+
" .dataframe tbody tr th {\n",
|
422 |
+
" vertical-align: top;\n",
|
423 |
+
" }\n",
|
424 |
+
"\n",
|
425 |
+
" .dataframe thead th {\n",
|
426 |
+
" text-align: right;\n",
|
427 |
+
" }\n",
|
428 |
+
"</style>\n",
|
429 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
430 |
+
" <thead>\n",
|
431 |
+
" <tr style=\"text-align: right;\">\n",
|
432 |
+
" <th></th>\n",
|
433 |
+
" <th>SOC_code</th>\n",
|
434 |
+
" <th>Category</th>\n",
|
435 |
+
" <th>Words</th>\n",
|
436 |
+
" <th>Major</th>\n",
|
437 |
+
" <th>high_level</th>\n",
|
438 |
+
" </tr>\n",
|
439 |
+
" </thead>\n",
|
440 |
+
" <tbody>\n",
|
441 |
+
" <tr>\n",
|
442 |
+
" <th>0</th>\n",
|
443 |
+
" <td>11-1011</td>\n",
|
444 |
+
" <td>Chief Executives</td>\n",
|
445 |
+
" <td>Admiral</td>\n",
|
446 |
+
" <td>11</td>\n",
|
447 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
448 |
+
" </tr>\n",
|
449 |
+
" <tr>\n",
|
450 |
+
" <th>1</th>\n",
|
451 |
+
" <td>11-1011</td>\n",
|
452 |
+
" <td>Chief Executives</td>\n",
|
453 |
+
" <td>CEO</td>\n",
|
454 |
+
" <td>11</td>\n",
|
455 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
456 |
+
" </tr>\n",
|
457 |
+
" <tr>\n",
|
458 |
+
" <th>2</th>\n",
|
459 |
+
" <td>11-1011</td>\n",
|
460 |
+
" <td>Chief Executives</td>\n",
|
461 |
+
" <td>Chief Executive Officer</td>\n",
|
462 |
+
" <td>11</td>\n",
|
463 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
464 |
+
" </tr>\n",
|
465 |
+
" <tr>\n",
|
466 |
+
" <th>3</th>\n",
|
467 |
+
" <td>11-1011</td>\n",
|
468 |
+
" <td>Chief Executives</td>\n",
|
469 |
+
" <td>Chief Financial Officer</td>\n",
|
470 |
+
" <td>11</td>\n",
|
471 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
472 |
+
" </tr>\n",
|
473 |
+
" <tr>\n",
|
474 |
+
" <th>4</th>\n",
|
475 |
+
" <td>11-1011</td>\n",
|
476 |
+
" <td>Chief Executives</td>\n",
|
477 |
+
" <td>Chief Operating Officer</td>\n",
|
478 |
+
" <td>11</td>\n",
|
479 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" </tbody>\n",
|
482 |
+
"</table>\n",
|
483 |
+
"</div>"
|
484 |
+
],
|
485 |
+
"text/plain": [
|
486 |
+
" SOC_code Category Words Major \\\n",
|
487 |
+
"0 11-1011 Chief Executives Admiral 11 \n",
|
488 |
+
"1 11-1011 Chief Executives CEO 11 \n",
|
489 |
+
"2 11-1011 Chief Executives Chief Executive Officer 11 \n",
|
490 |
+
"3 11-1011 Chief Executives Chief Financial Officer 11 \n",
|
491 |
+
"4 11-1011 Chief Executives Chief Operating Officer 11 \n",
|
492 |
+
"\n",
|
493 |
+
" high_level \n",
|
494 |
+
"0 Management, Business, Science, and Arts Occupa... \n",
|
495 |
+
"1 Management, Business, Science, and Arts Occupa... \n",
|
496 |
+
"2 Management, Business, Science, and Arts Occupa... \n",
|
497 |
+
"3 Management, Business, Science, and Arts Occupa... \n",
|
498 |
+
"4 Management, Business, Science, and Arts Occupa... "
|
499 |
+
]
|
500 |
+
},
|
501 |
+
"execution_count": 63,
|
502 |
+
"metadata": {},
|
503 |
+
"output_type": "execute_result"
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"source": [
|
507 |
+
"df.head()"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"execution_count": 64,
|
513 |
+
"id": "3f8c4a84-a50e-4dfe-9448-ac69c00750f4",
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [],
|
516 |
+
"source": [
|
517 |
+
"df.to_csv(\"soc-professions-2018.csv\")"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"cell_type": "code",
|
522 |
+
"execution_count": null,
|
523 |
+
"id": "753cbdaf-41a5-4665-b13f-145702b293ec",
|
524 |
+
"metadata": {},
|
525 |
+
"outputs": [],
|
526 |
+
"source": []
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": null,
|
531 |
+
"id": "b44845e3-5a9f-4009-894c-a8e7b43b4d1b",
|
532 |
+
"metadata": {},
|
533 |
+
"outputs": [],
|
534 |
+
"source": []
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"metadata": {
|
538 |
+
"kernelspec": {
|
539 |
+
"display_name": "Python 3 (ipykernel)",
|
540 |
+
"language": "python",
|
541 |
+
"name": "python3"
|
542 |
+
},
|
543 |
+
"language_info": {
|
544 |
+
"codemirror_mode": {
|
545 |
+
"name": "ipython",
|
546 |
+
"version": 3
|
547 |
+
},
|
548 |
+
"file_extension": ".py",
|
549 |
+
"mimetype": "text/x-python",
|
550 |
+
"name": "python",
|
551 |
+
"nbconvert_exporter": "python",
|
552 |
+
"pygments_lexer": "ipython3",
|
553 |
+
"version": "3.8.8"
|
554 |
+
}
|
555 |
+
},
|
556 |
+
"nbformat": 4,
|
557 |
+
"nbformat_minor": 5
|
558 |
+
}
|
Assets/Professions/.ipynb_checkpoints/soc-professions-2018-checkpoint.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Assets/Professions/.ipynb_checkpoints/soc_2018_direct_match_title_file-checkpoint.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Assets/Professions/Standard_Occupational_Classifications_Orgin.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Where did this data come from?
|
2 |
+
|
3 |
+
In looking for a solid list, I determined that the US Bureau of Labor Statistics would provide an excellent starting point for comprehensive listings of titles. This data can be found at [Standard Occupational Classifications in 2018](https://www.bls.gov/soc/2018/home.htm). Specifically, I made use of their [Direct Match Title File](https://www.bls.gov/soc/2018/home.htm#match), because it seemed to have the most comprehensive list and provided SOC categories.
|
4 |
+
|
5 |
+
Here's the Header from the file:
|
6 |
+
> U.S. Bureau of Labor Statistics
|
7 |
+
> On behalf of the Office of Management and Budget (OMB) and the Standard Occupational Classification Policy Committee (SOCPC)
|
8 |
+
> November 2017 (Updated April 15, 2020)
|
9 |
+
> ***Questions should be emailed to soc@bls.gov***
|
Assets/Professions/clean-SOC-2018.ipynb
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "08cf1c6f-0895-4e7b-9279-109c55dd6596",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd, spacy, nltk, numpy as np, re, ssl"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 52,
|
16 |
+
"id": "e3a83c6d-bfb4-4aa2-a9dd-a4fd7ffe6d03",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"df = pd.read_csv(\"soc_2018_direct_match_title_file.csv\")"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 53,
|
26 |
+
"id": "afa91f8f-d7f6-47a0-adc3-b21866acc2fa",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/html": [
|
32 |
+
"<div>\n",
|
33 |
+
"<style scoped>\n",
|
34 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
+
" vertical-align: middle;\n",
|
36 |
+
" }\n",
|
37 |
+
"\n",
|
38 |
+
" .dataframe tbody tr th {\n",
|
39 |
+
" vertical-align: top;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe thead th {\n",
|
43 |
+
" text-align: right;\n",
|
44 |
+
" }\n",
|
45 |
+
"</style>\n",
|
46 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
+
" <thead>\n",
|
48 |
+
" <tr style=\"text-align: right;\">\n",
|
49 |
+
" <th></th>\n",
|
50 |
+
" <th>2018 SOC Code</th>\n",
|
51 |
+
" <th>2018 SOC Title</th>\n",
|
52 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
53 |
+
" <th>Illustrative Example</th>\n",
|
54 |
+
" </tr>\n",
|
55 |
+
" </thead>\n",
|
56 |
+
" <tbody>\n",
|
57 |
+
" <tr>\n",
|
58 |
+
" <th>0</th>\n",
|
59 |
+
" <td>11-1011</td>\n",
|
60 |
+
" <td>Chief Executives</td>\n",
|
61 |
+
" <td>Admiral</td>\n",
|
62 |
+
" <td>x</td>\n",
|
63 |
+
" </tr>\n",
|
64 |
+
" <tr>\n",
|
65 |
+
" <th>1</th>\n",
|
66 |
+
" <td>11-1011</td>\n",
|
67 |
+
" <td>Chief Executives</td>\n",
|
68 |
+
" <td>CEO</td>\n",
|
69 |
+
" <td>NaN</td>\n",
|
70 |
+
" </tr>\n",
|
71 |
+
" <tr>\n",
|
72 |
+
" <th>2</th>\n",
|
73 |
+
" <td>11-1011</td>\n",
|
74 |
+
" <td>Chief Executives</td>\n",
|
75 |
+
" <td>Chief Executive Officer</td>\n",
|
76 |
+
" <td>NaN</td>\n",
|
77 |
+
" </tr>\n",
|
78 |
+
" <tr>\n",
|
79 |
+
" <th>3</th>\n",
|
80 |
+
" <td>11-1011</td>\n",
|
81 |
+
" <td>Chief Executives</td>\n",
|
82 |
+
" <td>Chief Financial Officer</td>\n",
|
83 |
+
" <td>x</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>4</th>\n",
|
87 |
+
" <td>11-1011</td>\n",
|
88 |
+
" <td>Chief Executives</td>\n",
|
89 |
+
" <td>Chief Operating Officer</td>\n",
|
90 |
+
" <td>x</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </tbody>\n",
|
93 |
+
"</table>\n",
|
94 |
+
"</div>"
|
95 |
+
],
|
96 |
+
"text/plain": [
|
97 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title \\\n",
|
98 |
+
"0 11-1011 Chief Executives Admiral \n",
|
99 |
+
"1 11-1011 Chief Executives CEO \n",
|
100 |
+
"2 11-1011 Chief Executives Chief Executive Officer \n",
|
101 |
+
"3 11-1011 Chief Executives Chief Financial Officer \n",
|
102 |
+
"4 11-1011 Chief Executives Chief Operating Officer \n",
|
103 |
+
"\n",
|
104 |
+
" Illustrative Example \n",
|
105 |
+
"0 x \n",
|
106 |
+
"1 NaN \n",
|
107 |
+
"2 NaN \n",
|
108 |
+
"3 x \n",
|
109 |
+
"4 x "
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"execution_count": 53,
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "execute_result"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"source": [
|
118 |
+
"df.head()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 54,
|
124 |
+
"id": "c2cc8198-f1ba-4318-b4f0-ae2d525290ff",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"df = df.drop(\"Illustrative Example\", axis=1)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 55,
|
134 |
+
"id": "020c3356-8263-47af-b6e3-bf6d27bfee78",
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"text/html": [
|
140 |
+
"<div>\n",
|
141 |
+
"<style scoped>\n",
|
142 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
143 |
+
" vertical-align: middle;\n",
|
144 |
+
" }\n",
|
145 |
+
"\n",
|
146 |
+
" .dataframe tbody tr th {\n",
|
147 |
+
" vertical-align: top;\n",
|
148 |
+
" }\n",
|
149 |
+
"\n",
|
150 |
+
" .dataframe thead th {\n",
|
151 |
+
" text-align: right;\n",
|
152 |
+
" }\n",
|
153 |
+
"</style>\n",
|
154 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
155 |
+
" <thead>\n",
|
156 |
+
" <tr style=\"text-align: right;\">\n",
|
157 |
+
" <th></th>\n",
|
158 |
+
" <th>2018 SOC Code</th>\n",
|
159 |
+
" <th>2018 SOC Title</th>\n",
|
160 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" </thead>\n",
|
163 |
+
" <tbody>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>0</th>\n",
|
166 |
+
" <td>11-1011</td>\n",
|
167 |
+
" <td>Chief Executives</td>\n",
|
168 |
+
" <td>Admiral</td>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" <tr>\n",
|
171 |
+
" <th>1</th>\n",
|
172 |
+
" <td>11-1011</td>\n",
|
173 |
+
" <td>Chief Executives</td>\n",
|
174 |
+
" <td>CEO</td>\n",
|
175 |
+
" </tr>\n",
|
176 |
+
" <tr>\n",
|
177 |
+
" <th>2</th>\n",
|
178 |
+
" <td>11-1011</td>\n",
|
179 |
+
" <td>Chief Executives</td>\n",
|
180 |
+
" <td>Chief Executive Officer</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>3</th>\n",
|
184 |
+
" <td>11-1011</td>\n",
|
185 |
+
" <td>Chief Executives</td>\n",
|
186 |
+
" <td>Chief Financial Officer</td>\n",
|
187 |
+
" </tr>\n",
|
188 |
+
" <tr>\n",
|
189 |
+
" <th>4</th>\n",
|
190 |
+
" <td>11-1011</td>\n",
|
191 |
+
" <td>Chief Executives</td>\n",
|
192 |
+
" <td>Chief Operating Officer</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" </tbody>\n",
|
195 |
+
"</table>\n",
|
196 |
+
"</div>"
|
197 |
+
],
|
198 |
+
"text/plain": [
|
199 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title\n",
|
200 |
+
"0 11-1011 Chief Executives Admiral\n",
|
201 |
+
"1 11-1011 Chief Executives CEO\n",
|
202 |
+
"2 11-1011 Chief Executives Chief Executive Officer\n",
|
203 |
+
"3 11-1011 Chief Executives Chief Financial Officer\n",
|
204 |
+
"4 11-1011 Chief Executives Chief Operating Officer"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
"execution_count": 55,
|
208 |
+
"metadata": {},
|
209 |
+
"output_type": "execute_result"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"source": [
|
213 |
+
"df.head()"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 56,
|
219 |
+
"id": "538a8047-9de8-4d29-961c-6b008c298e67",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": [
|
223 |
+
"df[\"Major\"] = df[\"2018 SOC Code\"].apply(lambda x: x[:2]).apply(int)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 1,
|
229 |
+
"id": "5969d5bc-69a5-42f6-a774-73a28e85b019",
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"# https://www.bls.gov/soc/2018/soc_2018_class_and_coding_structure.pdf determines the categorization.\n",
|
234 |
+
"def high_level_agg(number):\n",
|
235 |
+
" if 11 <= number <= 29:\n",
|
236 |
+
" category = \"Management, Business, Science, and Arts Occupations\"\n",
|
237 |
+
" elif 31 <= number <= 39:\n",
|
238 |
+
" category = \"Service Occupations\"\n",
|
239 |
+
" elif 41 <= number <= 43:\n",
|
240 |
+
" category = \"Sales and Office Occupations\"\n",
|
241 |
+
" elif 45 <= number <= 49:\n",
|
242 |
+
" category = \"Natural Resources, Construction, and Maintenance Occupations\"\n",
|
243 |
+
" elif 51 <= number <= 53:\n",
|
244 |
+
" category = \"Production, Transportation, and Material Moving Occupations\"\n",
|
245 |
+
" else:\n",
|
246 |
+
" category = \"Military Specific Occupations\"\n",
|
247 |
+
" return category"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 58,
|
253 |
+
"id": "ebd35a6d-e0cd-497f-9c0b-9acf24de25dc",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"data": {
|
258 |
+
"text/plain": [
|
259 |
+
"array([11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,\n",
|
260 |
+
" 45, 47, 49, 51, 53, 55])"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
"execution_count": 58,
|
264 |
+
"metadata": {},
|
265 |
+
"output_type": "execute_result"
|
266 |
+
}
|
267 |
+
],
|
268 |
+
"source": [
|
269 |
+
"df.Major.unique()"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 59,
|
275 |
+
"id": "729a6707-e442-4ad4-ad50-c6f701e00757",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"df[\"high_level\"] = df.Major.apply(high_level_agg)"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": 60,
|
285 |
+
"id": "8017e2e0-5635-47fc-bef6-be13e6988177",
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [
|
288 |
+
{
|
289 |
+
"data": {
|
290 |
+
"text/html": [
|
291 |
+
"<div>\n",
|
292 |
+
"<style scoped>\n",
|
293 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
294 |
+
" vertical-align: middle;\n",
|
295 |
+
" }\n",
|
296 |
+
"\n",
|
297 |
+
" .dataframe tbody tr th {\n",
|
298 |
+
" vertical-align: top;\n",
|
299 |
+
" }\n",
|
300 |
+
"\n",
|
301 |
+
" .dataframe thead th {\n",
|
302 |
+
" text-align: right;\n",
|
303 |
+
" }\n",
|
304 |
+
"</style>\n",
|
305 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
306 |
+
" <thead>\n",
|
307 |
+
" <tr style=\"text-align: right;\">\n",
|
308 |
+
" <th></th>\n",
|
309 |
+
" <th>2018 SOC Code</th>\n",
|
310 |
+
" <th>2018 SOC Title</th>\n",
|
311 |
+
" <th>2018 SOC Direct Match Title</th>\n",
|
312 |
+
" <th>Major</th>\n",
|
313 |
+
" <th>high_level</th>\n",
|
314 |
+
" </tr>\n",
|
315 |
+
" </thead>\n",
|
316 |
+
" <tbody>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>0</th>\n",
|
319 |
+
" <td>11-1011</td>\n",
|
320 |
+
" <td>Chief Executives</td>\n",
|
321 |
+
" <td>Admiral</td>\n",
|
322 |
+
" <td>11</td>\n",
|
323 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>1</th>\n",
|
327 |
+
" <td>11-1011</td>\n",
|
328 |
+
" <td>Chief Executives</td>\n",
|
329 |
+
" <td>CEO</td>\n",
|
330 |
+
" <td>11</td>\n",
|
331 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
332 |
+
" </tr>\n",
|
333 |
+
" <tr>\n",
|
334 |
+
" <th>2</th>\n",
|
335 |
+
" <td>11-1011</td>\n",
|
336 |
+
" <td>Chief Executives</td>\n",
|
337 |
+
" <td>Chief Executive Officer</td>\n",
|
338 |
+
" <td>11</td>\n",
|
339 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>3</th>\n",
|
343 |
+
" <td>11-1011</td>\n",
|
344 |
+
" <td>Chief Executives</td>\n",
|
345 |
+
" <td>Chief Financial Officer</td>\n",
|
346 |
+
" <td>11</td>\n",
|
347 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" <tr>\n",
|
350 |
+
" <th>4</th>\n",
|
351 |
+
" <td>11-1011</td>\n",
|
352 |
+
" <td>Chief Executives</td>\n",
|
353 |
+
" <td>Chief Operating Officer</td>\n",
|
354 |
+
" <td>11</td>\n",
|
355 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
356 |
+
" </tr>\n",
|
357 |
+
" </tbody>\n",
|
358 |
+
"</table>\n",
|
359 |
+
"</div>"
|
360 |
+
],
|
361 |
+
"text/plain": [
|
362 |
+
" 2018 SOC Code 2018 SOC Title 2018 SOC Direct Match Title Major \\\n",
|
363 |
+
"0 11-1011 Chief Executives Admiral 11 \n",
|
364 |
+
"1 11-1011 Chief Executives CEO 11 \n",
|
365 |
+
"2 11-1011 Chief Executives Chief Executive Officer 11 \n",
|
366 |
+
"3 11-1011 Chief Executives Chief Financial Officer 11 \n",
|
367 |
+
"4 11-1011 Chief Executives Chief Operating Officer 11 \n",
|
368 |
+
"\n",
|
369 |
+
" high_level \n",
|
370 |
+
"0 Management, Business, Science, and Arts Occupa... \n",
|
371 |
+
"1 Management, Business, Science, and Arts Occupa... \n",
|
372 |
+
"2 Management, Business, Science, and Arts Occupa... \n",
|
373 |
+
"3 Management, Business, Science, and Arts Occupa... \n",
|
374 |
+
"4 Management, Business, Science, and Arts Occupa... "
|
375 |
+
]
|
376 |
+
},
|
377 |
+
"execution_count": 60,
|
378 |
+
"metadata": {},
|
379 |
+
"output_type": "execute_result"
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"source": [
|
383 |
+
"df.head()"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": 61,
|
389 |
+
"id": "885a1379-3795-4e52-a6a6-b1f03476101e",
|
390 |
+
"metadata": {},
|
391 |
+
"outputs": [],
|
392 |
+
"source": [
|
393 |
+
"names = {\"2018 SOC Code\":\"SOC_code\", \"2018 SOC Title\": \"Category\", \"2018 SOC Direct Match Title\":\"Words\"}"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": 62,
|
399 |
+
"id": "b77202c7-8e4a-4bed-bc89-e7f146e857ba",
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"df = df.rename(columns=names)"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 63,
|
409 |
+
"id": "7035d6dc-0638-4069-8a17-074b7bab5366",
|
410 |
+
"metadata": {},
|
411 |
+
"outputs": [
|
412 |
+
{
|
413 |
+
"data": {
|
414 |
+
"text/html": [
|
415 |
+
"<div>\n",
|
416 |
+
"<style scoped>\n",
|
417 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
418 |
+
" vertical-align: middle;\n",
|
419 |
+
" }\n",
|
420 |
+
"\n",
|
421 |
+
" .dataframe tbody tr th {\n",
|
422 |
+
" vertical-align: top;\n",
|
423 |
+
" }\n",
|
424 |
+
"\n",
|
425 |
+
" .dataframe thead th {\n",
|
426 |
+
" text-align: right;\n",
|
427 |
+
" }\n",
|
428 |
+
"</style>\n",
|
429 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
430 |
+
" <thead>\n",
|
431 |
+
" <tr style=\"text-align: right;\">\n",
|
432 |
+
" <th></th>\n",
|
433 |
+
" <th>SOC_code</th>\n",
|
434 |
+
" <th>Category</th>\n",
|
435 |
+
" <th>Words</th>\n",
|
436 |
+
" <th>Major</th>\n",
|
437 |
+
" <th>high_level</th>\n",
|
438 |
+
" </tr>\n",
|
439 |
+
" </thead>\n",
|
440 |
+
" <tbody>\n",
|
441 |
+
" <tr>\n",
|
442 |
+
" <th>0</th>\n",
|
443 |
+
" <td>11-1011</td>\n",
|
444 |
+
" <td>Chief Executives</td>\n",
|
445 |
+
" <td>Admiral</td>\n",
|
446 |
+
" <td>11</td>\n",
|
447 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
448 |
+
" </tr>\n",
|
449 |
+
" <tr>\n",
|
450 |
+
" <th>1</th>\n",
|
451 |
+
" <td>11-1011</td>\n",
|
452 |
+
" <td>Chief Executives</td>\n",
|
453 |
+
" <td>CEO</td>\n",
|
454 |
+
" <td>11</td>\n",
|
455 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
456 |
+
" </tr>\n",
|
457 |
+
" <tr>\n",
|
458 |
+
" <th>2</th>\n",
|
459 |
+
" <td>11-1011</td>\n",
|
460 |
+
" <td>Chief Executives</td>\n",
|
461 |
+
" <td>Chief Executive Officer</td>\n",
|
462 |
+
" <td>11</td>\n",
|
463 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
464 |
+
" </tr>\n",
|
465 |
+
" <tr>\n",
|
466 |
+
" <th>3</th>\n",
|
467 |
+
" <td>11-1011</td>\n",
|
468 |
+
" <td>Chief Executives</td>\n",
|
469 |
+
" <td>Chief Financial Officer</td>\n",
|
470 |
+
" <td>11</td>\n",
|
471 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
472 |
+
" </tr>\n",
|
473 |
+
" <tr>\n",
|
474 |
+
" <th>4</th>\n",
|
475 |
+
" <td>11-1011</td>\n",
|
476 |
+
" <td>Chief Executives</td>\n",
|
477 |
+
" <td>Chief Operating Officer</td>\n",
|
478 |
+
" <td>11</td>\n",
|
479 |
+
" <td>Management, Business, Science, and Arts Occupa...</td>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" </tbody>\n",
|
482 |
+
"</table>\n",
|
483 |
+
"</div>"
|
484 |
+
],
|
485 |
+
"text/plain": [
|
486 |
+
" SOC_code Category Words Major \\\n",
|
487 |
+
"0 11-1011 Chief Executives Admiral 11 \n",
|
488 |
+
"1 11-1011 Chief Executives CEO 11 \n",
|
489 |
+
"2 11-1011 Chief Executives Chief Executive Officer 11 \n",
|
490 |
+
"3 11-1011 Chief Executives Chief Financial Officer 11 \n",
|
491 |
+
"4 11-1011 Chief Executives Chief Operating Officer 11 \n",
|
492 |
+
"\n",
|
493 |
+
" high_level \n",
|
494 |
+
"0 Management, Business, Science, and Arts Occupa... \n",
|
495 |
+
"1 Management, Business, Science, and Arts Occupa... \n",
|
496 |
+
"2 Management, Business, Science, and Arts Occupa... \n",
|
497 |
+
"3 Management, Business, Science, and Arts Occupa... \n",
|
498 |
+
"4 Management, Business, Science, and Arts Occupa... "
|
499 |
+
]
|
500 |
+
},
|
501 |
+
"execution_count": 63,
|
502 |
+
"metadata": {},
|
503 |
+
"output_type": "execute_result"
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"source": [
|
507 |
+
"df.head()"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"execution_count": 64,
|
513 |
+
"id": "3f8c4a84-a50e-4dfe-9448-ac69c00750f4",
|
514 |
+
"metadata": {},
|
515 |
+
"outputs": [],
|
516 |
+
"source": [
|
517 |
+
"df.to_csv(\"soc-professions-2018.csv\")"
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"cell_type": "code",
|
522 |
+
"execution_count": null,
|
523 |
+
"id": "753cbdaf-41a5-4665-b13f-145702b293ec",
|
524 |
+
"metadata": {},
|
525 |
+
"outputs": [],
|
526 |
+
"source": []
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": null,
|
531 |
+
"id": "b44845e3-5a9f-4009-894c-a8e7b43b4d1b",
|
532 |
+
"metadata": {},
|
533 |
+
"outputs": [],
|
534 |
+
"source": []
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"metadata": {
|
538 |
+
"kernelspec": {
|
539 |
+
"display_name": "Python 3 (ipykernel)",
|
540 |
+
"language": "python",
|
541 |
+
"name": "python3"
|
542 |
+
},
|
543 |
+
"language_info": {
|
544 |
+
"codemirror_mode": {
|
545 |
+
"name": "ipython",
|
546 |
+
"version": 3
|
547 |
+
},
|
548 |
+
"file_extension": ".py",
|
549 |
+
"mimetype": "text/x-python",
|
550 |
+
"name": "python",
|
551 |
+
"nbconvert_exporter": "python",
|
552 |
+
"pygments_lexer": "ipython3",
|
553 |
+
"version": "3.8.8"
|
554 |
+
}
|
555 |
+
},
|
556 |
+
"nbformat": 4,
|
557 |
+
"nbformat_minor": 5
|
558 |
+
}
|
Assets/Professions/soc-professions-2018.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Assets/Professions/soc_2018_direct_match_title_file.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Assets/Professions/soc_2018_direct_match_title_file.xlsx
ADDED
Binary file (208 kB). View file
|
|
Assets/Professions/soc_structure_2018.xlsx
ADDED
Binary file (51.4 kB). View file
|
|
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
|
|
4 |
nlp = spacy.load("en_core_web_lg")
|
5 |
from nltk.corpus import wordnet
|
6 |
|
|
|
1 |
#Import the libraries we know we'll need for the Generator.
|
2 |
import pandas as pd, spacy, nltk, numpy as np, re
|
3 |
from spacy.matcher import Matcher
|
4 |
+
!python -m spacy download en_core_web_lg
|
5 |
nlp = spacy.load("en_core_web_lg")
|
6 |
from nltk.corpus import wordnet
|
7 |
|